Report of Algae Tested for Toxins in Wisconsin Lakes

• 3

2 + 1

and Streams during the Summer of 1986.

x.

1

By James Vennie and Richard Wedepohl

Wisconsin Department of Natural Resources Water Resources Management Bureau Lake Management Program

#### INTRODUCTION

۲

1 1 1 2

This study was broken into two parts. Phase I was algal sample collection and initial toxin screening. Phase II was a more detailed study of algal toxins for mutagenicity, lethal dose, and viability during storage.

Reports on both phases, along with other relavent materials are include in this document. State Lab reports are part one and part two. Part three is a algae toxins factsheet. Part four contains tables that report the data collected during the Phase I study.

A background summary and management considerations were provided by Dr. Wayne Carmichael who reviewed the information presented here.

Copies of this report can be obtained from:

Wisconsin Department of Natural Resources Attn.: James Vennie WR/2 P.O. Box 7921 Madison, Wisconsin

The original lab report slips were sent to Richard Wedepohl(608)267-7513 at DNR-Madison by the State Lab. They are filed in the Lake Management Files. Some of the data on all the slips were entered on to a Lotus 123 computerized Spreadsheet and is available in that form.

Lab work was done by Wyatt Repavich (608)262-1210 with assistance from Jon Standridge and Jerry Rymer. Sample collection was done by the DNR District staff their names will be found on the individual lab slips. Bob Barnum (414)497-4053 from Lake Michigan District, Water Supply, directed the sampling of the water supply systems.

BACKGROUND

By Wayne W. Carmichael, Ph.D.

Reports of toxic freshwater algae are almost exclusively due to members of the division Cyanophyta, commonly called blue-green algae or cyanobacteria. Although cyanobacteria are found in almost any environment ranging from hot springs to Antarctic soils, known toxic members are mostly planktonic (Carmichael, 1986 and in press). Economic losses due to water-based diseases of freshwater cyanobacteria toxins are the result of contact with or consumption of water containing toxin and/or toxic cells.

τ • •

1 1

These toxins are all water soluble and temperature stable. They are either released by the cyanobacterial cell or loosely bound so that changes in cell permeability or age allow their release into the environment. Lethal and sublethal amounts of these toxins become available to animals during periods of heavy cell growth, termed "water blooms," especially when the water bloom accumulates on the surface, inshore, where animals are watering.

Water blooms can occur wherever proper conditions for growth, including irradiance, temperature, neutral or alkaline conditions, and nutrients are found. The increasing eutrophication of water supplies from urban and agricultural sources, which raises mineral nutrient levels, and increased the occurrence and intensity of these annual blooms. It should be noted that although there are several bloom-forming genera of cyanobacteria those that occur most often are also those that can produce toxins.

Known occurrences of toxic cyanobacteria in freshwater include Canada (four provinces), Europe (12 countries), United States (19 states), USSR (Ukraine), Australia, India, Bangladesh, South Africa, Israel, Japan, New Zealand, Argentina, and Chile. Not all blooms of a toxigenic species produce toxins, however, and it is not possible to tell by microscopic examination of the cells whether they are toxic. Environmental conditions that favor bloom formation include (1) moderate to high levels of nutrients, especially phosphorus and nitrate or ammonia; (2) water temperatures between 15 and 30 degrees C; and pH between 6 and 9 or higher.

The economic impact from toxic freshwater cyanobacteria include the costs incurred from deaths of domestic animals, allergic and gastrointestinal problems after human contact with water blooms (including loss of income from recreational areas), and increased expense for the detection and removal of taste, odor, and toxins (although no approved method yet exists for removal of toxins, activated carbon has been tried in certain areas). A full accounting of the economic problems associated with cyanobacteria toxins is given by Gorham and Carmichael (in press).

#### Water Management of Algal Toxins

- a. Toxic freshwater cyanobacteria are present in Wisconsin in some raw surface water supplies.
- b. Estimates of toxic bloom frequency range from about 25

percent in cool weather years and to 50 percent or greater in warm weather years in lakes predisposed to presence of cyanobacteria blooms.

. .

- c. Toxic blue-green algae bloom occurrence is erratic and unpredictable but are found under the same environmental conditions which favor non-toxic blooms.
- d. Toxic blue-green algae (perhaps algae in general) should be included as part of a list of "agents of water-based disease" for state water management purposes.
- e. Waters which are used for recreational and drinking water which favor the growth of heavy water blooms should be monitored for the presence of toxic water blooms

#### References

- Carmichael, W.W. (1986). Algal Toxins. In: J.A. Callow (ed.) Advances in Botanical Research. V. 12. Academic Press. pp. 47-101.
- Carmichael, W.W. (1988). Toxins of Freshwater Algae. In: A.T. Tu (ed.) Handbook of Natural Product Toxins. V. 3. Marine Toxins. Marcel Dekkar, Inc. pp. 121-147.
- Gorham, P.R. and W.W. Carmichael. (In Press). Hazards of freshwater blue-green algae (cyanobacteria). In: C.A. Lembi and J.R. Waaland (eds.). Algae and Human Affairs. Cambridge Univ. Press.

## PART 1

۲

,

-

, **.** 

,

,

Summary Report of Toxic Algae Sampling in Wisconsin Lakes and Rivers during 1986

Phase One Report

.

•

.

Summary Report of Toxic Algae Sampling in Wisconsin Lakes and Rivers during 1986. ۲

Wyatt Repavich, James Vennie, Richard Wedepohl, and Jon Standridge

This study was conducted by the Wisconsin Department of Natural Resources, Lake Management Program and the State Lab of Hygiene. Its objective was to confirm the findings of earlier studies of toxic algae done by Karl, 1970.

The primary questions were:

. . . . .

Does toxic algae exist in Wisconsin's Lakes and Rivers?

How extensive is their occurrence?

Are identifiable quantities of the algal toxins getting into the surface water supplies systems?

This study was stimulated by two incidents in Wisconsin which resulted in the deaths of dogs swimming in a lake in Polk County and cattle drinking from a pond in Green County. In the spring of 1986 a contract was established between the Department of Natural Resources (DNR) and the State Laboratory of Hygiene for the lab analysis portion of this study.

The DNR field staff was asked to collect samples of algae blooms they observed during their normal work such as supervising Aquatic Nuisance Control algae treatments.

The capability was established at the State lab to receive samples and to do an initial screening test for algal toxins. The resulting samples received by the State lab fell into four categories:

- 1. Samples of algae from lakes with historical algal problems.
- 2. Repeat samples from 7 sites (6 southern lakes and one river) collected 5 times during the summer.
- 3. A sampling of raw and finished water from 8 public water supply systems using surface source water collected at the same sites 3 times.
- 4. Incident investigation sampling related to deaths of ducks and sheep during 1986.

#### Sampling Methods

. .

The DNR field staff was directed with the Appendix A memo (Bruce Baker - May 15, 1986) to collect the water containing algae in a standard 250 milliliter bacteriological bottle. This was to then be kept in a cold and dark environment and ship directly to the state lab for analysis along with the laboratory slip (Appendix B). The samples were taken generally at the water's surface along the shoreline with the field person attempting to get as much algae in the sample bottle as was possible without using an artificial means of concentrating. Variations of this method occurred in collections of the public water supply systems where one sample was collected from the raw water intake of the treatment system and another of the finished water. Some lake water samples, excluding water supply systems, were received by the lab with very few algal cells present. These were classified as "no test" samples and are reported in Table 1.

#### Lab Analysis methods

Samples were usually received from the field in 24-72 hours from time of collection. Upon arrival, the sample was assigned a number, mixed thoroughly, and four 2 ml subsamples were placed into 13 x 100 mm polystyrene test tubes and covered. The remaining sample in the collection bottle was then stored frozen at -20 degrees C. All pertinent information from the laboratory slip, such as the collector's name and address, the site name and exact location of collection, the date, time, and weather conditions were recorded into a log book.

One of the four test tubes was stored at 4 degrees C for subsequent microscopic identification of the algae. The other three were placed in an ethanol/dry ice bath at -70 degrees C then thawed in a warm water bath at 20-40 degrees C. This process which disrupts the cells and releases toxins was repeated for a total of three freeze/thaw cycles, then the samples were stored at -20 degrees C.

The specific algae genera present in the sample were determined by microscopic examination of wet mount slides prepared with a drop of India ink. Conventional taxonomic guides supplemented by consultations with the University of Wisconsin Botany Department were used in making the identifications. The identified algae were listed in order of dominance in the samples. Those genera most commonly observed were <u>Anabaena</u>, <u>Aphanizomenon</u>, <u>Microcystis</u>, <u>Gloeotrichia</u>, <u>Oscillatoria</u>, and <u>Lyngbya</u> (Figure 1 and 2).

•

Toxins were detected in the processed samples by mouse bioassay. Duplicate female albino mice (25-30 grams) were injected intraperitoneally with 0.5 cc of lysed sample (Carmichael, 1984). A third control mouse was injected with 0.5 cc of 0.9% normal saline.

۲

Following the injection the mice were observed continuously for the first 1.5 hours, then every hour to 6.5 hours and again after 24 hours. Symptoms of toxicity including lethargy, piloerection, salivation, respiratory distress, muscle tremors, muscle fasciculation, paralysis and death were recorded. Surviving mice were dispatched with cervical dislocation and necropsies were performed on mice exhibiting symptoms.

The assay was considered positive for algal toxins if symptoms were observed, and death occurred prior to 24 hours. Hepatotoxins were differentiated from neurotoxins at necropsy. Hepatotoxins produced enlarged, darkened or mottled livers (Figure 3). Contact toxins produced numerous lesions and necrotic areas on all peritoneal organs (Figure 4). Neurotoxins showed signs of respiratory distress (convulsions, muscle tremors, muscle fasiculations and salivation) with organs appearing normal at necropsy. Occasionally a sample would produce peritonitis or massive rapid infection of the peritoneal cavity. Mice exhibiting peritonitis at necropsy were considered negative for algal toxins. Mice exhibiting peritonitis at necropsy were considered negative for algal toxins. Mice exhibiting symptoms or liver damage but surviving the 24 hours were considered marginally positive. Negative tests were indicated by absence of any symptoms and no pathology found at necropsy.

#### Summary of Results

The period of collection occurred from June 1986 through November 1986. A cool, windy summer resulted in fewer algae blooms to sample than expected. A total of 308 samples representing 97 lakes, 12 ponds and 5 streams were collected from 114 sites (Table 1 and Figure 5). Of these sites, 19 were positive, 6 were marginally positive, 12 were not tested and 77 were negative. The positive and marginally positive were merged and reported as toxic (Figure 6 and Table 2).

Although toxic blooms were documented in the water bodies used as water supply system sources, this screening of raw water samples indicated the presents of only a few algal cells of <u>Anabaena</u>, <u>Microcystis</u>, and <u>Oscillatoria</u> with no signs of toxicity in the mouse bloassay tests.

#### References

۲

- Carmichael, W.W. and L.D. Schwartz. 1984. Preventing livestock deaths from blue-green algae poisoning. USDA Farmers Bulletin. 2275:1-11.
- Karl, G.W. 1970. Toxic algae in Wisconsin lakes. Masters Thesis, University of Wisconsin, Madison. 72 pages.

•

, **.** 

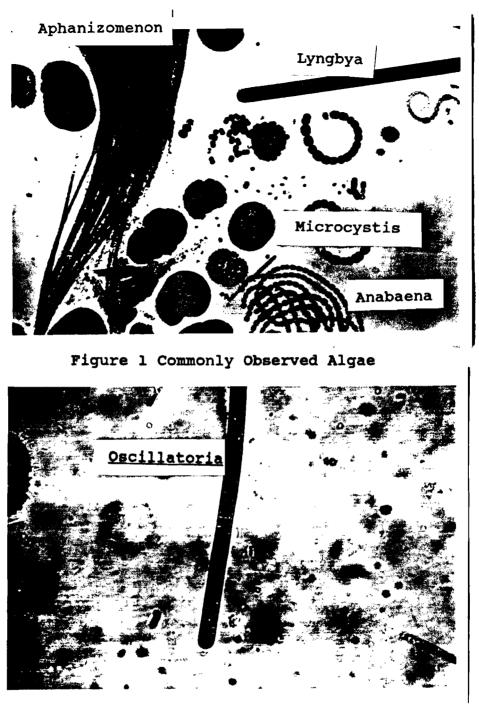



Figure 2 More common Algae



Figure 3 Hepatotoxin Effects on Mouse Liver

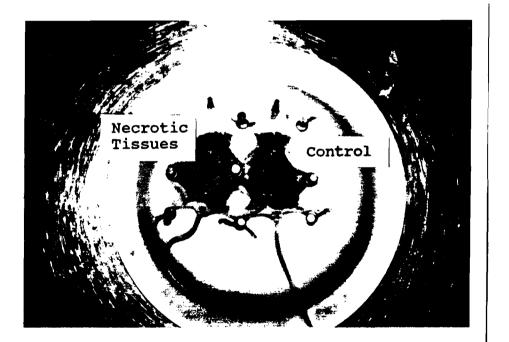
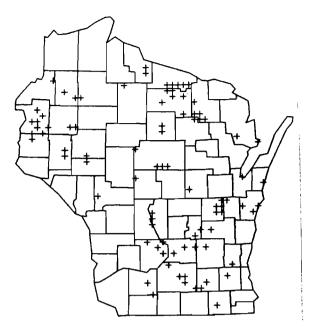




Figure 4 Contact Toxins Effects in Mice



١

Figure 5 Lakes Sampled for Algal Toxins in 1986

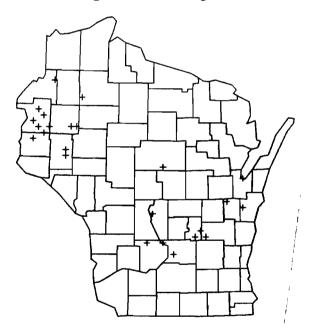



Figure 6 Lakes Where Algal Toxins were Found in 1986

| Site      | No Test | Negative | Marginally<br>Positive | Positive | Total |
|-----------|---------|----------|------------------------|----------|-------|
| Lakes     | 12      | 62       | 4                      | 19       | 97    |
| Ponds     | 0       | 10       | 2                      | 0        | 12    |
| Streams   | 0       | 5        | 0                      | 0        | 5     |
| <br>Total | <br>12  | 77       | 6                      | <br>19   | 114   |

۲.

# Table 1 Wisconsin 1986 Algae Toxin Assay Results

.

. . • . •

.

.

.

•

•

,

• • •

|             | ANGE        |    | NT<br>LAKE NAME                     | SAMPLE<br>NUMBER |   |       |
|-------------|-------------|----|-------------------------------------|------------------|---|-------|
| T13N        |             |    | DELTON LAKE                         | 3                | 2 | 123   |
| TI3N        |             | 1  | DELTON LAKE                         | 5                | ī | 123   |
| TIIN        |             |    | WISCONSIN LAKE MOON LIGHT BAY       | Y 31             | 2 | 231   |
| TIIN        | R08E        | 2  | WISCONSIN LAKE MERRIMAC BOAT        | 32               | 1 | 2 1 3 |
| <b>T15N</b> | R13E        |    | LITTLE GREEN LAKE                   | 35               |   | 34    |
| T33N        | RIOW        | 4  | TEN MILE LAKE                       | 39               | 1 | 321   |
|             |             |    | PRAIRIE LAKE                        | 40               | 1 | 3     |
|             |             |    | MENOMIN LAKE W. BEACH               | 43               | 1 | 312   |
| T29N        | R12W        | 7  | TAINTER LAKE, WEST SHORE            | 44               | 1 | 31    |
| <b>T12N</b> | R14E        |    | BEAVER DAM LAKE HWY G               | 49               | 1 | 31    |
| <b>T31N</b> |             |    | SQUAW LAKE NORTHEAST END            |                  | 1 | 31    |
|             |             |    | REDSTONE LAKE                       | 86               |   | 13    |
| T32N        |             |    | MARTIN POND-FISH REARING PONI       |                  |   | 321   |
|             |             |    | FROKNER POND-FISH REARING PON       |                  |   | 31    |
|             | <b>R15W</b> | 13 | MAGNOR LAKE                         | 110              | _ | 31    |
| <b>T19N</b> | <b>R21E</b> | 14 | BIG LONG LAKE-BOAT LANDING          | 114              | 1 | 132   |
| T20N        |             |    | WINNEBAGO LAKE HIGH CLIFF           |                  | 2 | 34    |
| T20N        | <b>R17E</b> |    | WINNEBAGO LAKE HIGH CLIFF           | 141              | 2 | 4     |
| <b>T33N</b> |             |    | WAPOGASSET LAKE                     | 142              | 2 | 13    |
| <b>T41N</b> | R14W        | 15 | STAPLES LAKE                        | 143              | 1 | 31    |
| T41N        | R14W        |    | STAPLES LAKE                        | 144              | 2 | 31    |
| T24N        | R21E        | 16 | STAPLES LAKE<br>GREEN BAY GRID 1001 | 156              | 1 | 3     |
| <b>TOON</b> | KT/M        | т, | BUTTERNUT BIG LARE                  | 157              |   | 31    |
|             | R17E        |    | WINNEBAGO LAKE HIGH CLIFF           | 184              | 2 | 4 1   |
| T3 3N       | <b>R17W</b> |    | WAPOGASSET LAKE                     | 186              | 1 | 312   |
| T35N        |             |    | BONE LAKE                           | 188              | 1 | 31    |
| T20N        |             | 20 | WINNEBAGO LAKE HIGH CLIFF           | 214              | 1 | 134   |
| T26N        | R06E        |    | BIG EAU PLEINE RESERVOIR            | 239              | 2 | 1     |
| <b>T18N</b> | R04E        | 21 | PETENWELL LAKE CHICAGO AV.          | 241              | 1 | 3     |
| <b>T18N</b> | R04E        |    | PETENWELL LAKE PETENWELL PARI       |                  | 1 | 31    |
| T2 6N       |             |    | BIG EAU PLEINE RES. CT. O NW        |                  | 1 | 13    |
| <b>T38N</b> |             |    | SISSABAGAMA LAKE BIG BOAT LAN       |                  | 2 | 213   |
| <b>T31N</b> |             |    | RIVERDALE FLOWAGE-APPLE RIVER       |                  | 1 | 21    |
| T14N        | R12E        | 25 | MARIA LAKE SE SHORELINE             | 307              | 2 | 2 1   |

۲

TYPES OF ALGAE CODES RESULTS CODE

1-<u>ANABAENA</u> 2-APHANIZOMENON 3-<u>MICROCYSTIS</u> 4-<u>GLOEOTRICHIA</u> 5-NONE 6-<u>LYNGBYA</u> 7-<u>OSCILLATORIA</u>

•

•

.

1-Positive

2-Marginally Positive

Appendix A

۲

· ·

, ,

Memo on Field Sampling Proceedure

.

# CORRESPONDENCE/MEMORANDUM-

DATE: May 15, 1986

FILE REF: 3120

TO: Water Resources Supervisors, ATTN: Lake Management Coordinators; ANC Supervisors

FROM: Bruce Baker - WR/2

SUBJECT: Toxic Algae Screening Survey

A screening survey to define the extent and magnitude of toxic algae blooms in Visconsin will be conducted this summer. We will be able to test up to 500 water samples, collected from as many lakes and ponds as possible between mid-June and mid-September. Your assistance, suggestions and insights on this problem are requested.

On May 29, Dr. Mayne Carmichael from Wright State University will be in Madison to meet with Department and lab staff to discuss the problem of toxic algae. He will be presenting a seminar from 8:00 a.m. to 10:00 a.m. (Room 611B, GEF 2) and will then be meeting with the lab staff at the University to review analytical procedures. You and your associates are invited to attend.

Algal toxins have been documented as having caused the deaths of several cattle and dogs this past summer in Wisconsin. As more becomes known about the potential damage these potent toxins can cause and given that our lakes continue to become more eutrophic, we feel that it is important the problem be better understood. Three problem species of algae commonly found in Wisconsin, Anabaena, Microcystis, and Aphanizomenon, have been known to produce the exotoxins. <u>Gloetrichia</u> and <u>Oscillatoria</u> are others. Major losses to animals include cattle, sheep, hogs, birds, and fish, unile minor losses have been reported for dogs, horses, small wild animals, and invertebrates. Acute oral toxicity to humans has not been documented, but there is increasing evidence that the toxins cause gastroenteritis and contact irritations to lake users. Some studies have also implicated algal toxins with long term human health problems.

The proposed collection protocol for this summer is as follows:

- Between 100-150 samples can be collected per district as the first estimate. If possible sampling should be evened out over the time periods of June 15 to September 15 to make life easier at the lab. However, the main criteria should be to sample intense blue-green algal blooms. It has been suggested that ANC supervisors would be ideal people to collect samples, as they are travelling to, from, or are at a spray job
- 2. This first level survey is being set up to <u>maximize</u> the potential for finding problems. Therefore sampling should be done as much as possible when and where heavy blue-green algae blooms are occurring. This may mean weighting sample collection towards the later part of the summer, but we do hope you can hit some lakes earlier.

### TO: Lake Management Coordinators

- 3. Samples should be collected where surface scums are the heaviest, such as at sites of wind blown accumulations or in protected bays. Samples can be collected from piers, boats, or directly from shore - whatever is most convenient. The lakes or ponds sampled are up to you. To keep this survey from adding to the workload (except for a little, tiny, bit) and becoming a separate project, please sample as is convenient, i.e. lakes where ANC treatments are being conducted or those lakes you happen to be driving past or are surveying for some other purpose, such as a beach inspection.
- 4. The samples should be collected in sterile 250 milliliter bacti bottles by skimming surface scums to maximize the amount of algae present in the sample. Immediately following collection samples should be iced and stored in the dark and shipped to the lab on the day of sampling.
- 5. If you couple sample collection to a specific incident, i.e. a fish kill, animal death, or swimming complaint, which is a good idea, and you want to be <u>sure</u> the lab will analyze your sample, write PRIORITY in big red letters on the lab slip. This will alert John Standridge, who will be handling this survey at the lab. On the lab slips just note sample as toxic algae in addition to providing basic locater information etc. If the lab receives more samples than budgeted, analysis will be prioritized by inspecting them for the presence of one of the major problem algae species.

I'll be notifying the departments of Health and Social Services and Agriculture of this survey so they're aware of what we'll be doing. Again, if you are responding to an incident be aware that algal toxicity problems are very ephemeral. Collecting a sample a day after or even several hours after the problem has surfaced can be too late. Since the toxins are usually concentrated in thin surface scums, a puff of wind can quickly dilute and disperse the problem, to a point where it will no longer be toxic. Remember to label the sample PRIORITY if it is very important that it be screened.

RV:cn

cc: District Directors Jim Addis - FN/4 Steve Miller - WN/4

7007V

Appendix B

•

۲

Sample Laboratory Slip

.

•

.

.

4k TOXIC BLUE-GREEN ALGAE PROGRAM DATA SHEET SITE: Big hong hake COUNTY: MANIFOU LOCATION: Beat handing COLLECTOR: RAS TIME: 10 15 HR MIN DATE: 073186 MM DD YY WATER TEMP: 25 °C рН:\_\_\_\_ 262-9742/2-121 WEATHER 1. WIND DIRECTION (CIRCLE) NW N NE NONE E v S SE /SW . 2. WIND SPEED (CHECK) ( 608 ) X a. LIGHT **b.** BREEZY \_\_\_\_ c. STRONG SECTIONS: 3. HIGH TEMP: 82 °F 4. CLOUD COVER: <u>40</u> % 5. PREVIOUS WEATHER (DESCRIBE) Warm Windy ANIMAL OR FISH KILLS (DESCRIBE) None Observed. OTHER OBSERVATIONS (DESCRIBE) Extension Bloom - Alane Along Windword V landing Fastshire ALIG 1 BED AIG12 86

PART 2

۲

Toxic Algae Study Report on Mutagenicity, Lethal Dose and Sample Storage Viability

Phase Two Report

### Toxic Algae Study Report On Mutagenicity, Lethal Dose and Sample Storage Viability

۲

Wyatt Rapavich, Jon Standridge, and William Sonzogni

## Introduction

Phase one of the 1986 Toxic Algae project indicated that roughly one quarter of the waters in the State of Wisconsin contained toxic blooms at the time they were sampled. The acute effects of these toxins on animal life are well documented; however, the chronic effects are not. Therefore, both crude and purified extracts of algal toxins were tested for mutagenic activity using a battery of three <u>in vitro</u> tests -- the Ames Mutagen Test (Maron, 1983), the <u>Bacillus subtilis</u> Multigene Sporulation Test (Sacks, 1984), and a chromosomal aberration test using human lymphocytes (Cohen, 1971). Also, the viability of stored samples and the minimum lethal dose of the extracts were determined.

#### Methods

Algal extracts tested were both purified and crude. Purified extracts (including hepatotoxin at 0.9 mg/mL, anatoxin-a(s) at 0.02 mg/mL, and neosaxitoxin - unknown concentration) were obtained from Dr. Wayne W. Carmichael's lab at Wright State University. Eight extracts were prepared from frozen Wisconsin lake water samples proven to contain toxins by mouse bioassay. The lake water samples were thawed, mixed, and dispensed into 500 mL beakers in 50 mL aligouts, then frozen and thawed in an ethanol/dry ice bath to disrupt the cell walls and release the toxins. Next, the sample was centrifuged to remove coarse particulate matter and the supernatant was collected and passed through a 0.45 um filter. The filtrate was then evaporated to dryness and reconstituted in 10 mL of distilled water. Again the sample was filtered through a 0.45 um filter followed by a 0.20 um filter to insure sterility. The resultant filtrate was finally placed in sterile vials and checked for the presence of viable toxins using mouse bioassay.

Ames testing was conducted on both the crude and the three pure toxins at three doses (100, 50, and 25 uL) following procedures developed by Maron (1983) using <u>Salmonella</u> <u>typhimurium</u> with and without the use of a liver microsome preparation (S-9). A second bacterial assay employing <u>Bacillus</u> <u>subtilis</u>, developed for detecting environmental mutagens (Sacks 1984), was applied to the hepatotoxin and neosaxitoxin (plus S-9 and minus S-9) and to the crude extracts (minus S-9) at three concentrations (100, 50 and 25%). The three pure algal toxins were also tested <u>in vitro</u> against human lymphocytes (Cohen 1971). Three log dilutions of toxin were tested on three human lymphocyte cell sources. In addition to the mutagen studies, the long-term storage of toxins for future analysis was tested to determine the length of time samples may be stored and retain activity. Nine crude extracts with storage times ranging from two to six months were tested for viability using mouse assays.

Studies were also carried out to determine the minimum doses at which the toxins are lethal to mice for both purified and crude extracts. Twofold dilutions were used until a non-lethal dose was found using the mouse assay procedures.

#### Results

Neither bacterial assay indicated any significant mutagenic activity (Tables 1 and 2) from the toxins. <u>B. subtilis</u> did exhibit toxicity when exposed to the pure extracts at the higher doses (Table 2).

All three pure extracts, particularly hepatotoxin, were clastogenic, or capable of producing a low level of chromosome damage, in the human lymphocyte system (Table 3). No toxic effects were noted.

The viability of samples stored frozen at  $-20^{\circ}$ C was variable. Neosaxitoxins were tested at 1 month was toxic, but were no longer viable when tested after six months. The hepatotoxins and contact poisons showed continued strong activity after five months of storage. Anatoxin-a(s) remained viable at six months but was not viable at ten months.

Studies were done to determine the minimum lethal dose of both crude and purified extracts. Although anatoxin-a(s) is a faster acting toxin than hepatotoxin, results in Table 4 indicate that the neurotoxin required a higher concentration (0.268 mg/kg) to kill mice, whereas hepatotoxin only required 0.080 mg/kg. Note that a(s) toxin is unstable and therefore is probably a loss of activity is expected - this indicates that the toxicity is 10 times greater than the concentration reported here (Carmichael 1987). Data on the concentration of neosaxitoxin was unavailable, therefore the final concentration of 7.14 mL/kg of the pure extract was required to kill a mouse.

The crude extract data from Table 4 demonstrates that lethal doses are related to the amount of toxin in the extract. Extracts from Beaver Dam Lake and Lake Menomin were the most potent, needing only 3.57 mL/kg of extract to kill mice. Big Long Lake, Big Eau Pleine Reservoir and Lake Delton exhibited the least amount of toxicity, requiring 14.28 mL/kg of extract. Estimates of minimum lethal doses for the Lake Menomin and Beaver Dam Lake samples for a 20 kg Springer Spaniel dog would be approximately 70 mL of lake water ingested. For a 75 kg human the lethal dose would be approximately 270 mL for the same toxin.

## <u>Conclusions</u>

٩

Toxic algae is a potential danger in Wisconsin. The possibility of death of livestock and other animals consuming water containing algal toxins is an ever present threat considering the relatively low doses required and the state wide prevalence of toxic blooms.

Although the Ames and <u>B. subtilus</u> assays do not indicate dangerous effects from chronic exposure, the lymphocyte study did suggest potential health risk related to human consumption of toxins. In relative terms, however, it should be noted that the level of chromosome damage is much lower than that produced from known clastogenic compound used as controls. Nevertheless, each of the three systems used have varying sensitivity to compounds due to different metabolic pathways and chromosome vulnerability. Therefore, the findings of the lymphocyte study should not be overlooked particularly since the effects on human cells is shown.

#### References

- Carmichael, W.W. Personal Communications, 1987, Wright State University, Dayton, Ohio 45435
- Cohen, Maimon M. and Kurt Hirschhorn, "Cytogenetic studies in animals," <u>Chemical Mutagens</u>, Vol. 2, Chap. 19, 1971, 515-534.
- Maron, Dorothy M. and Bruce N. Ames, "Revised methods for the Salmonella mutagenicity test, "<u>Mutation Research</u>, 113, 1983, 173-215.
- Sacks, L.E. and J.T. MacGregor, "The <u>Bacillus subtilis</u> multigene sporulation test for detection of environmental mutagens," <u>Chemical Mutagens</u>, Vol. 9, Chap. 5, 1984, 165-181.

## Table 1

•

.

## Mutagenic Activity of Algal Toxins in the Ames Mutagen Assay

Ratio of Induced Revertants to Control

• •

|                 |           | TA         | <b>98</b> | TA       | 100          | TA 102     |
|-----------------|-----------|------------|-----------|----------|--------------|------------|
| Extract         | Dose (uL) | <u>-S9</u> | +59       | <u> </u> | <u>+</u> \$9 | <u></u>    |
|                 |           |            |           |          |              |            |
| Purified Toxins | 100       | 0.01       | 0.11      | 0.31     | 0.00         | 0 40 0 11  |
| Neosaxitoxin    | 100       | 0.02       | -0.11     | 0.31     | 0.02         | 0.40 0.11  |
|                 | 50        | 0.48       | 0.22      | 0.07     | 0.19         | 0.13 0.13  |
|                 | 25        | 0.03       | -0.14     | . 0.11   | 0.10         | 0.60 0.23  |
| lepatotoxin     | 100       | 0.14       | 0.22      | 0.08     | 0.14         | 0.42 0.14  |
| (0.9 ug/uL)     | 50        | 0.02       | 0.18      | 0.01     | -0.07        | 0.33 0.09  |
| -               | 25        | 0.16       | 0.00      | 0.04     | 0.12         | 0.22 0.10  |
| natoxin-a(s)    | 100       | 0.62       | 0.27      | 0.06     | 0.16         | 0.41 0.20  |
| 0.02 ug/uL)     | 50        | 0.42       | 0.27      | 0.09     | 0.13         | 0.20 0.22  |
| "P! UD!         | 25        | 0.02       | 0.09      | -0.19    | 0.02         | 0.36 0.18  |
|                 | 23        | 0.02       | 0.07      | -0.17    | 0.02         | 0.50 0.10  |
| Crude Extracts  |           |            |           |          |              |            |
| . Delton        | 100       | 0.08       | 0.25      | 0.31     | -0.04        | 0.54 -0.10 |
|                 | 50        | 0.24       | 0.28      | 0.44     | -0.07        | 0.27 0.06  |
|                 | 25        | 0.30       | 0.39      | -0.07    | 0.04         | 0.15 0.11  |
| en Mile L.      | 100       | 0.44       | 0.27      | 0.36     | 0.73         | 0.16 0.54  |
|                 | 50        | 0.48       | -0.04     | 0.29     | 0.37         | 0.61 0.11  |
|                 | 25        | 0.20       | 0.15      | 0.13     | 0.56         | 0.57 0.35  |
| . Menomin       | 100       | 0.32       | 0.19      | 0.21     | 0.09         | 0.67 0.08  |
|                 | 50        | 0.16       | 0.15      | 0.01     | 0.06         | 0.49 0.19  |
|                 | 25        | -0.13      | 0.30      | -0.13    | -0.01        | 0.23 0.02  |
|                 |           |            |           |          |              |            |
| eaver Dam L.    | 100       | 0.07       | -0.15     | 0.37     |              | 0.36 0.21  |
|                 | 50        | 0.22       | -0.19     | 0.13     | -0.05        | 0.45 0.14  |
|                 | 25        | 0.19       | -0.29     | 0.30     | -0.23        | 0.22 0.06  |
| quaw L.         | 100       | -0.03      | -0.27     | 0.40     | -0.11        | 0.44 0.08  |
| -               | 50        | 0.31       | 0.15      | 0.28     | 0.11         | 0.10 -0.05 |
|                 | 25        | 0.03       | -0,03     | 0.11     | -0.15        | 0.04 -0.07 |
| g Long L.       | 100       | 0.03       | 0.00      | 0.39     | -0.19        | 0.36 0.12  |
| -00             | 50        | -0.09      | -0.29     | 0.29     | -0.04        | 0.09 0.30  |
|                 | 25        | 0.03       | 0.13      | -0.09    | 0.07         | 0.22 0.46  |
| taples L.       | 100       | -0.07      | -0.29     | 0.25     | -0.01        | 0.14 0.02  |
| rahies r.       | 50        | -0.03      | -0.29     | 0.30     | -0.01        | 0.02 -0.03 |
|                 |           |            |           |          |              |            |
|                 | 25        | -0.06      | 0.13      | 0.12     | -0.19        | 0.18 0.16  |

.'

|                |           |      | o of Ind<br>. 98 |      | evertan<br>100 | ts to C<br>TA |      |
|----------------|-----------|------|------------------|------|----------------|---------------|------|
| Extract        | Dose (uL) | -59  | +59              | -59  | +59            | -59           | +59  |
| Big Eau Pleine | 100       | 0.10 | -0.02            | 0.31 | 0.05           | 0.80          | 0.36 |
| Res.           | 50        |      | -0.07            |      | 0.10           | 0.15          | 0.09 |
|                | 25        | 0.00 | 0.27             | 0.22 | -0.08          | -0.15         | 0.52 |

٩

1

:

, •.

. . . .

.

Postives in the Ames test have a ratio value greater than 1.00 and exhibit a dose response.

.

.

.

•

.

#### Table 2

.

|                |         |            | Number of<br>10 Sur | Mutants/<br>vivors |          |
|----------------|---------|------------|---------------------|--------------------|----------|
|                |         | <b>S9</b>  | Strain              | Strain             | Percent  |
| Extract        | Dose    | Mix        | 168                 | HCR-9              | Survival |
| Control        | 10 uL   | -          | 2                   | 6                  | _        |
|                | 10 uL   | +          | 2                   | 2                  | -        |
| H202           | 1.25 ug | _          | 41                  | 58                 | 91       |
| Purified:      |         |            |                     |                    |          |
| Hepatotoxin    | 9.0 ug  | _          | 1                   | 2                  | 74       |
| nepucocoxin    | 4.5 ug  | _          | 3                   | 5                  | 125      |
|                | 2.25 ug | _          | 1                   | 5                  | 126      |
| Hepatotoxin    | 9.0 ug  | +          | 2                   | 6                  | 68       |
| nepatotoxin    | 4.5 ug  |            | 3                   | 1                  | 85       |
|                | 2.25 ug | +          | 0                   | 8                  | 85       |
| Neosaxitoxin   | 100%    | +          |                     |                    | 67       |
| Neosaxicoxin   |         | -          | 1                   | 10                 |          |
|                | 50%     | -          | 1                   | 3                  | 75       |
|                | 25%     | -          | 1                   | 3                  | 100      |
| Neosaxitoxin   | 100%    | +          | 1                   | 3                  | 75       |
|                | 50%     | +          | 2                   | 1                  | 91       |
|                | 25%     | +          | 0                   | 5                  | 94       |
| Crude:         |         |            |                     |                    |          |
| L. Delton      | 100%    | -          | 4                   | 2                  | 118      |
|                | 50%     | -          | 1                   | 7                  | 127      |
|                | 25%     | -          | 3                   | 4                  | 127      |
| Ten Mile L.    | 100%    | • •        | 5                   | 3                  | 132      |
|                | 50%     | -          | 4                   | 5                  | 121      |
|                | 25%     | -          | 4                   | 3                  | 120      |
| L. Menomin     | 100%    | _          | 6                   | 6                  | 105      |
|                | 50%     | _          | 3                   | 3                  | 100      |
|                | 25%     | -          | 1                   | 5                  | 144      |
| Beaver Dam L.  | 1007    | _          | 4                   | 1                  | 124      |
| DCAYEL DAW D.  | 50%     | _          | 3                   | 4                  | 139      |
|                | 25%     | -          | 4                   | 4                  | 135      |
| Course I       | 100%    | -          | 2                   | 5                  | 93       |
| Squaw L.       |         | -          |                     | •                  | 116      |
|                | 50%     | -          | 2                   | 2<br>5             | 100      |
| <b>D</b>       | 25%     | <b>-</b> , | 1                   |                    |          |
| Big Long L.    | 1007    | -          | 0                   | 4                  | 101      |
|                | 50%     | -          | 3<br>2              | 3                  | 113      |
|                | 25%     | -          |                     | 2                  | 95       |
| Staples L.     | 100%    | -          | 1                   | 3                  | 90       |
|                | 50%     | -          | 5                   | 4                  | 89       |
|                | 25%     | -          | 1                   | 1                  | 92       |
| Big Eau Pleine | 100%    | -          | 4                   | 4                  | 91       |
| Res.           | 50%     | -          | 1                   | 2                  | 102      |
|                | 25%     | -          | 3                   | 2                  | 89       |

## Mutagenic Activity of Algal Toxins in the <u>Bacillus subtilis</u> Multigene Sporulation Test

Positives generally exhibit a number of mutants value two times greater than the control coupled with a dose response.

٩

. \*

١.

•

| Ta | Ь | 1 | e | 3 |
|----|---|---|---|---|
|----|---|---|---|---|

## Chromosome Breakage in Human Lymphocytes Exposed In Vitro for 3 Algaltoxins\*

| Toxin        | Concentration<br>(ug/ml) | %Total<br>Breaks<br>(Range) | % Control<br>Breaks<br>(Range) | % Induced<br>Breaks+<br>(Range) | % Mitotic<br>Index<br>(Range) | Control<br>%Mitotic<br>Index<br>(Range) | Mitotic<br>Index as %<br>of control<br>(Range) | Number<br>of<br>People | Number<br>of<br>Cells |
|--------------|--------------------------|-----------------------------|--------------------------------|---------------------------------|-------------------------------|-----------------------------------------|------------------------------------------------|------------------------|-----------------------|
| Hepatotoxin  |                          | · _ ·                       | <u> </u>                       |                                 |                               |                                         |                                                |                        |                       |
|              | 0.9 ug/ml                | 14-32                       | 6                              | 8-26                            | 0.8-2.5                       | 1.2-6.2                                 | 40.3-111.0                                     | 3                      | 150                   |
|              | 0.9 ug/ml                | 12-16                       | 6                              | 6-10                            | 1.0-4.6                       | 1.2-6.2                                 | 74.2-83.3                                      | 3                      | 150                   |
|              | 0.009 ug/ml++            | 6                           | 4                              | 2                               | 1.7                           | 2.3                                     | 47.8-87.0                                      | 1                      | 100                   |
| Anatoxin##   |                          |                             |                                |                                 |                               |                                         |                                                |                        |                       |
|              | 0.08 ug/mi               | 12-16                       | 4-6                            | 8-10                            | 1.9-2.3                       | 2.2-2.3                                 | 82.6-104.5                                     | 2                      | 100                   |
|              | 0.008 ug/ml              | 6-12                        | 4-6                            | 08                              | 1.8-2.0                       | 2.1-2.3                                 | 86.4-88.0                                      | 2<br>2                 | 150                   |
| •            | 0.0008 ug/mi             | 4-12                        | 6                              | (-2)-6                          | 1.4-2.4                       | 1.8-2.2                                 | 77.8-109.1                                     | 2                      | 150                   |
| Neosaxitoxin | •                        |                             |                                |                                 |                               |                                         |                                                |                        |                       |
|              | 0.005 ml of stock        | 16                          | 4-6                            | 10-12                           | 1.2-1.6                       | 1.2-2.3                                 | 52.2-133.3                                     | 2                      | 100                   |
|              | 0.0005 ml of stock       | 12-14                       | 6                              | 6-8                             | 1.2-3.5                       | 1.2-6.2                                 | 56.4-100.0                                     | 2                      | 100                   |
|              | 0.00005 ml of stock      | 4-11                        | 6                              | (-2)-5                          | 2.5-5.2                       | 1.2-6.2                                 | 83.9-208.3                                     | 2                      | 150                   |

72 hour cultures with toxins added after first 24 hours.

+ Induced breakage is total breakage from which breakage observed in parallel controls has been subtracted.

**\*\*** Due to limited amount of material, could not test a higher dose.

++ This result was based only on a single treated culture.

-

## Lethal Dose of Algal Extracts

|                             | Dose (mL) | Concent<br>(mL/kg<br>mouse) | tration<br>(mg/kg<br>mouse) | Time<br>to<br>Death (min) |
|-----------------------------|-----------|-----------------------------|-----------------------------|---------------------------|
| Purified                    |           | · · ·                       |                             | :                         |
| Hepatotoxin<br>(0.9 mg/mL)  | 0.5       | 14.2857                     | 12.857                      | 26                        |
|                             | 0.1       | 2.8571                      | 2.571                       | 25                        |
| ·                           | 0.05      | 1.4286                      | 1.286                       | 31                        |
|                             | 0.025     | 0.7143                      | 0.642                       | 38                        |
|                             | 0.0125    | 0.3571                      | 0.321                       | <60                       |
|                             | 0.00625   | 0.1786                      | 0.161                       | <60                       |
|                             | 0.003125  | 0.0893                      | 0.080                       | <180                      |
|                             | 0.0015625 | 0.0446                      | 0.040                       | >180                      |
| Neosaxitoxin                | 0.5       | 14.2857                     | -                           | 4                         |
|                             | 0.25      | 7.1429                      | -                           | 5                         |
|                             | 0.125     | 3.5714                      | -                           | >210                      |
|                             | 0.0625    | 1.7857                      | -                           | >210                      |
| Anatoxin - a(s)             | 0.5       | 14.2857                     | 0.286                       | 31                        |
| (0.02 mg/mL)                | 0.25      | 7.1429                      | 0.143                       | >210                      |
|                             | 0.125     | 3.5714                      | 0.071                       | >210                      |
|                             | 0.0625    | 1.7857                      | 0.036                       | >210                      |
| Crude Extracts<br>L. Delton | 0.05      | 14.2857                     | · •                         | 26                        |
|                             | 0.25      | 7.1429                      | -                           | >210                      |
|                             | 0.125     | 3.5714                      | -                           | >210                      |
|                             | 0.0625    | 1.7857                      | -                           | >210                      |

.

.

1

|               |           | Concent          |                  | Time              |
|---------------|-----------|------------------|------------------|-------------------|
|               | Dose (mL) | (mL/kg<br>mouse) | (mg/kg<br>mouse) | to<br>Death (min) |
| Ten Mile L.   | 0.5       | 14.2857          | -                | 40                |
|               | 0.25      | 7.1429           | -                | 120               |
|               | 0.125     | 3.5714           | -                | >210              |
|               | 0.0625    | 1.7857           | -                | >210              |
| L. Menomin    | 0.5       | 14.2857          | -                | 50                |
|               | 0.25      | 7.1429           | -                | 120               |
|               | 0.125     | 3.5714           | -                | <210              |
|               | 0.0625    | 1.7857           | -                | >210              |
| Beaver Dam L. | 0.5       | 14.2857          | -                | 37                |
|               | 0.25      | 7.1429           | -                | 44                |
|               | 0.125     | 3.5714           | -                | 120               |
|               | 0.0625    | 1.7857           | -                | >210              |
| Squaw L.      | 0.5       | 14.2857 .        | -                | 36                |
|               | 0.25      | 7.1429           | -                | 120               |
|               | 0.125     | 3.5714           | -                | >210              |
|               | 0.0625    | 1.7857           | -                | >210              |
| Big Long L.   | 0.5       | 14.2857          | -                | 61                |
| ć             | 0.25      | 7.1429           |                  | >210              |
|               | 0.125     | 3.5714           | -                | >210              |
|               | 0.0625    | 1.7857           | -                | >210              |
|               |           |                  |                  |                   |

•

,

\* \*\*\*\*\*\*\*\*\* ----

. 1

۲

م بن • را

·

|                     |           | Concent          | Time             |                   |
|---------------------|-----------|------------------|------------------|-------------------|
|                     | Dose (mL) | (mL/kg<br>mouse) | (mg/kg<br>mouse) | to<br>Death (min) |
| Staples L.          | 0.5       | 14.2857          |                  | 57                |
|                     | 0.25      | 7,1429           | -                | 120               |
|                     | 0.125     | 3.5714           | -                | >210              |
|                     | 0.0625    | 1.7857           | -                | >210              |
| Big Eau Pleine Res. | 0.5       | 14.2857          | -                | 45                |
| . •                 | 0.25      | 7.1429           | -                | >210              |
|                     | 0.125     | 3.5714           | -                | >210              |
|                     | 0.0625    | 1.7857           | -                | >210              |

.

.

.

•

, <sup>•</sup>

ء م م ا

•

PART 3

۲

• •

.

Fact Sheet on Algae Toxins

. .

•

# ALGAE THAT PRODUCE TOXINS AND THEIR POTENTIAL EFFECTS

Department of Natural Resources Lake Management Program PUBL-WR-162 87 June 1987

Salar and and a second

Alter the series and 14 15 A

## Summary

Algae are fed by nutrients in lake water. Human activities add excessive amounts of nutrients to lake water which can, in turn cause more algal blooms. Algal blooms are easily recognized as thick, green slimy mats which float on the lake surface but only a few types of blue-green algae produce toxins. Limited and specific conditions are required for blue-green algae to create toxins. If ingested these blue-green algal toxins can be harmful to animals.

## What are Algae?

Algae are microscopic plants that are found in all lakes as well as in the ocean. There are many different kinds of algae, and each grows under different conditions. Some algae are abundant in sutrophic (highly fertile) lakes while others are found in oligotrophic (nutrient poor) lakes. The more algae present in a lake the greener and less clear the water will appear. The amount and type of algae that are found in a lake will affect water clarity, the fishery, and the growth of other plants.

## Algae as Part of the Food Chain

Algae are an important part of the natural lake food chain. These microscopic plants are eaten by microscopic animals called zooplankton. The zooplankton are eaten by fish which are then eaten by larger fish. Humans and other animals may consume these larger fish.

## **Different Types of Algae**

Most freshwater algae can be divided into three broad categories: green, blue-green, and golden brown, based on the kind of pigments that are present in the algal cells. The algae may appear green, brown, blue, blue-green, violet, red or black.

In general, blue-green algae are the most undesirable type of algae in a take environment. Blue-green algal blooms form thick, unsightly mats that float on the lake, especially around the lakeshore, impoundments or on small ponds.

Blue-green algae are caused by pollution entering lakes. Runoff from streets, farms and/or industries can provide the nutrients which encourage algel growth.

## Algae that Produce Toxins

Blue-green algae are looked upon as the weed species of the algae family. Blue-green algae are inedible to most zooplankton (microscopic animals) and waterfowl such as ducks and geese. Some kinds of blue-green algae, under specific conditions, may be dangerous or even deadly to dogs and cattle.

Algal toxins are natural poisons that may be produced primarily by five different genera for types) of blue-green algae. Conditions must be just right in order for the toxins or poisons to be produced. The conditions include: high levels of numeronts in the water (phosphorus and nitrogen), water temperatures between 72-80 degrees Fahrenheit, and water pH between 5-9. Toxic algal blooms usually occur on hot, dry days with very little wind in the summer and early fail.

the second s

A laboratory analysis is one way of determining whether or not a particular bloom of algae is toxic. In many cases the presence of algal toxins are recognized only after livestock or pets become ill or die after being exposed to an algal bloom. and the second of a second of s guilt gen

## Effects of Exposure to Algae that Produce Toxins

Toxins released into the water from dying blue-green algae may be dangerous to livestock, pets, waterfowl, and other animals. Animals drinking the water containing toxins can be affected in four ways, depending on the kind of animal, the type of poison produced by the algae, and the amount of algae consumed:

- they may damage their liver or skin;
- they may die immediately due to respiratory failure;
- they may die between one to six hours after drinking the bad water as their internal organs fail, particularly the liver.
- they may not be affected at all

## How do Algae that Produce Toxins Affect Humans?

People may also be affected by algae that produce toxins, particularly from swimming in water containing the toxins, or by touching the algae itself. Symptoms include itching, reddsning of the skin, eye irritation, dizziness, cramps and vomiting. Drinking minute quantities of water containing the toxins may result in gastrointestinal problems (indigestion). Generally, humans recover from the symptoms within onit to two days. Long-term effects from regularly drinking contaminated water are unknown. No human deaths from drinking water containing taxins produced by algae have ever been reported in Wisconsin.

## Algae that Produce Toxins in Wisconsin

Algae that produce toxins are found in lakes and ponds all over the world, including the United States, Europe, New Zealand, Australia, the USSR, Bangladesh, India, Japan, and South Africa. In Wisconsin, livestock, dogs, and waterfowl have died as a result of drinking contaminated waters.

While algal blooms are a natural part of the lake environment, we are becoming more concerned about their presence. Why? Because human activities add excessive amounts of nutrients to our lakes and streams, resulting in more frequent algal blooms with occasional toxin producing algae. To better understand how widespread and serious the algal toxin problems may be in Wisconsin, the Department of Natural Resources sampled lakes during 1986. Samples were collected at sites where blue-green algal blooms were found.

Analysis was done by the State Laboratory of Hygiene to determine if these samples were toxic. A report will soon be available which discusses these results.

Algal blooms that produce toxins are very difficult to pinpoint. Even if a blue-green algal bloom is present, toxins may not be produced. Further, scientists are coming to realize that a toxic bloom may be widespread over an entire water body, or may accur in a broken pattern where one part of the bloom may be toxic while nearby, no toxins are being produced. Wind on a lake or pond may shift the toxic or non-toxic bloom around. Even it an internal dies from the water sample a bloom. Therefore, it is very difficult to conduct a survey of the problems. However, the toxic algae may full be found in the animal's stomach, confirming suspicions that the water it deank may have killed it.

STOL TRANSFER

## What Can We Do?

Limiting the amount of pollutants entering a lake is the best long term solution to the problem. By controlling phosphorus inputs to a lake, blue-green and toxic algai blooms may be prevented. Become involved. Learn more about lakes and what you can do to help protect these valuable is resources by contacting your nearest DFIR office of County Extension Agent.

Thinough we are still in the process of learning more about signs that produce tokins, we do recognize that it is a problem on some lakes and poinds in Wisconsin. It is a potential problem that farmers, pet owners and parents should be aware of in order to prevent illness or even death. We can all play a role in helping control nuisance algal blooms by learning about and practicing ways of protecting our lake resources.

Where thick, floating blue-green algol blooms occur, farmers and others with animals should take precautions to keep animals from drinking the surface scum. Do not allow small children to drink, swim, wade, or play in the water, and never drink the water yourself where dense blue-green scums have accumulated. Prevention is the best solution to avoid loss of livestock and to avoid illness in both animals and humans.

and the second

### PART 4

٩.

Tables of Data Collected.

- Table 1 Wisconsin Surface Water Supply Sampled for Algal Toxins with the Mouse Bioassay
- Table 2 Lakes Sampled for Algal Toxins in 1986

. . . .

- Table 3 Intensive Sampling Conducted By Wyatt Repavich and other Southern District Staff.
- Table 4 All Samples Collected During the Survey
- Table 5 Surface Water Inventory of Lakes done 1960's to 1980's for positive toxins lakes.

|                                                                             |       |              |       | ·         |
|-----------------------------------------------------------------------------|-------|--------------|-------|-----------|
| Table 1 Wisconsin Surface Water Supply Sample<br>with Mouse Bioassay.       | d fo: | r Alga       | al To | oxins     |
| Results                                                                     |       | Alq          | yae   |           |
| 0-Negative                                                                  |       | 1- <u>AN</u> | ABAE  | <u>NA</u> |
| 1-Positive                                                                  |       | 2-AP         | HANI  | ZOMENON   |
| Analyzed by Wyatt Repavich 2-Marginally                                     |       | 3-MI         | CROC  | YSTIS     |
| Analyzed by Wyatt Repavich 2-Marginally<br>at State Lab of Hygiene Positive |       |              |       | RICHIA    |
|                                                                             |       | 5-NO         |       |           |
|                                                                             |       | 6-LY         |       | Δ         |
|                                                                             |       |              |       | ATORIA    |
|                                                                             | Ð     | esult        |       | Date      |
| Lake Name and Water Supply System                                           | #     |              | lgae  |           |
| Tave Name and Mater Subbry System                                           | π<br> |              |       |           |
| MICHIGAN LAKE RAW GREEN BAY CITY FROM KEWAUNEE                              | 205   | 0            | 5     | 19-Aug-86 |
| MICHIGAN LAKE RAW GREEN BAY CITY FROM KEWAUNEE                              | 228   | 0            | 5     | 26-Aug-86 |
| MICHIGAN LAKE RAW GREEN BAY CITY FROM KEWAUNEE                              | 250   | 0            | 5     | 02-Sep-86 |
| MICHIGAN LAKE FINISHED GREEN BAY                                            | 206   |              | 5     | 19-Aug-86 |
| MICHIGAN LAKE FINISHED GREEN BAY                                            | 229   |              | 5     | 26-Aug-86 |
| MICHIGAN LAKE FINISHED GREEN BAY                                            | 251   | ŏ            | 5     | 02-Sep-86 |
| MICHIGAN DAKE FINISHED GREEN BAI                                            | 231   | v            | 5     | 02 000 00 |
| MICHIGAN LAKE RAW MANITOWOC INTAKE                                          | 203   | 0            | 5     | 19-Aug-86 |
| MICHIGAN LAKE RAW MANITOWOC INTAKE                                          | 226   | 0            | 5     | 26-Aug-86 |
| MICHIGAN LAKE RAW MANITOWOC INTAKE                                          | 248   | 0            | 5     | 02-Sep-86 |
| MICHIGAN LAKE FINISHED MANITOWOC IN PLANT                                   | 204   |              | 5     | 19-Aug-86 |
| MICHIGAN LAKE FINISHED MANITOWOC IN PLANT                                   | 227   |              | 5     | 26-Aug-86 |
| MICHIGAN LAKE FINISHED MANITOWOC IN PLANT                                   | 249   | ŏ            | 5     | 02-Sep-86 |
|                                                                             |       | •            | •     |           |
| MICHIGAN LAKE RAW MARINETTE IN PLANT                                        | 207   | 0            | 5     | 19-Aug-86 |
| MICHIGAN LAKE RAW MARINETTE IN PLANT                                        | 230   |              | 5     | 26-Aug-86 |
| MICHIGAN LAKE RAW MARINETTE IN PLANT                                        | 252   | ŏ            | 5     | 02-Sep-86 |
| MICHIGAN LAKE FINISHED MARINETTE                                            | 208   |              | 5     | 19-Aug-86 |
| MICHIGAN LAKE FINISHED MARINEITE IN PLANT                                   | 231   | ŏ            | 5     | 26-Aug-86 |
|                                                                             |       | ŏ            | 5     |           |
| MICHIGAN LAKE FINISHED MARINETTE IN PLANT                                   | 253   | U            | 5     | 02-Sep-86 |
| SUNSET LK RAW KING WI VET HOME                                              | 199   | 0            | 5     | 18-Aug-86 |
| SUNSET LK RAW KING WI VET HOME                                              | 223   | 0            | 5     | 25-Aug-86 |
| SUNSET LK RAW KING WI VET HOME                                              | 270   |              |       | 03-Sep-86 |
| SUNSET LK FINISHED KING WI VET HOME                                         |       | Ō            |       | 18-Aug-86 |
| SUNSET LK FINISHED KING WI VET HOME                                         | 224   | ň            | 5     | 25-Aug-86 |
| SUNSET LK FINISHED KING WI VET HOME                                         | 271   |              | 5     | 03-Sep-86 |
| SUNSEI ER FINISNED RING WI VEI NOME                                         | 6/1   | U            | 5     | 03 865 00 |
| WINNEBAGO LAKE RAW APPLETON INTAKE PUMPS                                    | 191   | 0            | 1     | 18-Aug-86 |
| WINNEBAGO LAKE RAW APPLETON INTAKE PUMPS                                    | 215   | 0            | 5     | 25-Aug-86 |
| WINNEBAGO LAKE RAW APPLETON INTAKE PUMPS                                    | 262   | 0            | 5     | 03-Sep-86 |
| WINNEBAGO LAKE FINISHED APPLETON INTAKE PUMPS                               | 192   | Ó            | 5     | 18-Aug-86 |
| WINNEBAGO LAKE FINISHED APPLETON INTAKE PUMPS                               |       |              |       | 25-Aug-86 |
| WINNEBAGO LAKE FINISHED APPLETON INTAKE PUMPS                               |       |              | 5     | 03-Sep-86 |
|                                                                             | 200   | -            | -     |           |
| WINNEBAGO LAKE MENASHA FILTRATION BASIN                                     | 193   | 0            | 13    | 18-Aug-86 |
| WINNEBAGO LAKE MENASHA FILTRATION BASIN                                     | 217   |              |       | 25-Aug-86 |
| WINNEBAGO LAKE MENASHA FILTRATION BASIN                                     | 266   |              |       | 03-Sep-86 |
|                                                                             |       | -            |       |           |

• •

.

٠

| WINNEBAGO LAKE |                                 | 194 | 0 | 5   | 18-Aug-86         |
|----------------|---------------------------------|-----|---|-----|-------------------|
| WINNEBAGO LAKE |                                 | 218 | 0 | 5   | 25-Aug-86         |
| WINNEBAGO LAKE | MENASHA TAP WATER IN PLANT      | 267 | 0 | 5   | <b>03-</b> Sep-86 |
| WINNERSCO LAVE | NEENAH RAW WATER IN PLANT       | 195 | 0 | 1 2 | 18-Aug-86         |
|                |                                 |     | - |     | -                 |
| WINNEBAGO LAKE | NEENAH RAW WATER IN PLANT       | 219 | 0 | 5   | 25-Aug-86         |
| WINNEBAGO LAKE | NEENAH RAW WATER IN PLANT       | 264 | 0 | 5   | <b>03-Sep-8</b> 6 |
| WINNEBAGO LAKE | NEENAH FINISHRD TAP WATER IN PL | 196 | 0 | 5   | <b>18-Aug-86</b>  |
| WINNEBAGO LAKE | NEENAH FINISHRD TAP WATER IN PL | 220 | 0 | 5   | 25-Aug-86         |
| WINNEBAGO LAKE | NEENAH FINISHRD TAP WATER IN PL | 265 | 0 | 5   | <b>03-Sep-86</b>  |
| WINNEBAGO LAKE | OSHKOSH RAW WATER OUTSIDE PLANT | 107 | 0 | 1   | 10-10-06          |
|                |                                 |     | - |     | 18-Aug-86         |
| WINNEBAGO LAKE | OSHKOSH RAW WATER OUTSIDE PLANT |     | 0 | 5   | 25-Aug-86         |
| WINNEBAGO LAKE | OSHKOSH RAW WATER OUTSIDE PLANT | 268 | 0 | 37  | 03-Sep-86         |
| WINNEBAGO LAKE | OSHKOSH FINISHRD TAP WATER IN P | 198 | 0 | 5   | 18-Aug-86         |
| WINNEBAGO LAKE | OSHKOSH FINISHRD TAP WATER IN P | 222 | 0 | 5   | 25-Aug-86         |
| WINNEBAGO LAKE | OSHKOSH FINISHRD TAP WATER IN P | 269 | 0 | 5   | 03-Sep-86         |

۲

• . • . •

•

· · · ·

.

•

.

.

Table 2 List of Wisconsin Lakes Sampled for Algae Toxins in 1986.

. . .

TOWNSHIP RANGE LAKE NAME 

T34N
R12E
AGNES
LAKE MIDDLE 1 METER

T34N
R12E
AGNES
LAKE MIDDLE 1 METER

T27N
R08W
ALTOONA LAKE

T40N
R11E
ANVIL LAKE SOUTH SIDE BT LANDING

T26N
R07E
BAKER, MATT FARM

T34N
R11W
BALSAM EAST LAKE

T40N
R11E
BASS LAKE EAST SIDE R.E.PETERSON

T31N
R20E
BASS LAKE WEST END

T37N
R06E
BEARSKIN, BIG LAKE EAST @ BOAT LANDING

T18N
R16E
BEAU DES MORTES

T12N
R14E
BEAVER DAM LAKE HWY D

T26N
R05E
BIG EAU PLEINE RESERVOIR PARK NORTH BEACH

T19N
R21E
BIG LONG LAKE-BOAT LANDING

T35N
R12E
BISHOP LAKE-SE BOAT LANDING

T35N
R12E
BISHOP LAKE

T40N
R09E
BOOT LAKE NORTH SIDE SUNNYBROOK RESORT

T19N
R21E
BULHEAD LAKE WEST PUB. LANDING

T36N
R16W
BOHE LAKE

T40N
R12E
BUTTERNUT LAKE

T39N
R07E
CARSTENS LAKE WEST SHORE

T19N
T2NR16EDELTHOLEHAREHIDDLEBORFACET13NR06EDELTON LAKET11NR06EDEVILSLAKET13NR03EDUTCHHOLLOWLAKEPLONPLONPLONPLON T40NR10EEAGLE RIVER HWY 17 BRIDGET9NR19EFIVE LAKET34NR18WFROKNER POND-FISH REARING POND POLK COT24NR21EGREEN BAY GRID 1001 1/4 MI OF BAYSHORE PK ROIE HOLDING POND DORCHESTER POTW ROIE HOLDING POND LYNN DAIRY RIOE KEGONSA LAKE T29N T29N T6N T5N R13E KOSHKONONG LAKE T43N R03E LAKE OF THE FALLS (FLAMBEAU FLOWAGE) T40N R07E LITTLE ARBOR VITAE NE LDG T19N R16E LITTLE BUTTE DES MORTES LAKE T15N R13E LITTLE GREEN LAKE

| T35N         | -            | LITTLE SAND LAKE BOAT LANDING               |
|--------------|--------------|---------------------------------------------|
| T4ON         | R08E         |                                             |
| T37N         | RIOW         |                                             |
| <b>T39N</b>  | R07E         | MADELINE LAKE OFF CTH J                     |
| T3 3 N       | R15W         |                                             |
| <b>T14N</b>  | R12E         | MARIA LAKE SE SHORELINE                     |
| T32N         | <b>R16W</b>  | MARTIN POND-FISH REARING POND POLK CO       |
| <b>T28N</b>  | <b>R12W</b>  | MENOMIN LAKE W. BEACH                       |
| TJON         | R24E         | MICHIGAN LAKE RAW MARINETTE IN PLANT        |
| T7N          |              | MONONA BAY-NORTH BEACH                      |
| T7N          |              | MONONA LAKE                                 |
| T40N         |              | MUSKELUNGE LAKE NORTH SIDE BT LANDING       |
| T12N         |              | PARK LAKE ADJ TO SWIMMING AREA              |
| T5N          |              | PAUL BURNS POND                             |
|              |              | PELICAN LAKE EAST SIDE                      |
| T35N         |              |                                             |
| T32N         |              | PESOBIC LAKE EAST SHORE                     |
| <b>T18N</b>  |              | PETENWELL LAKE ARROWHEAD LAGOON             |
| <b>T7N</b>   |              | PEWAUKEE LAKE                               |
| T34N         |              | PICKEREL LAKE VORAS TAVERN                  |
| T37N         |              | PINE LAKE NE SIDE                           |
| T34N         | <b>R</b> 17W | POLK CO-BELD POND-WALLEYE REARING POND      |
| T34N         | <b>R17W</b>  | POLK CO-HELMAN'S POND-WALLEYE REARING POND  |
| T39N         | <b>R12W</b>  | POND 10 SPOONER W/W HATCHERY                |
| <b>T</b> 39N | <b>R12W</b>  | POND 7 SPOONER W/W HATCHERY                 |
| T33N         | RIIW         | PRAIRE LAKE                                 |
| <b>T39N</b>  | ROSE         | RAINBOW FLOWAGE CTH E NEAR DAM ROAD         |
| TI3N         | R03E         | REDSTONE LAKE                               |
| T31N         | R18W         | RIVERDALE FLOWAGE-APPLE RIVER               |
| T31N         | R18W         | RIVERDALE FLOWAGE-APPLE RIVER               |
|              |              |                                             |
| T34N         | R14E         | ROBERTS LAKE-SE BOAT LANDING                |
| T6N          | R14E         | ROCK RIVER EAST OF SUMNER                   |
| T40N         | RIOE         | SCATTERING RICE LAKE SOUTH SHORE BT LANDING |
| T38N         | R09W         | SISSABAGAMA LAKE SW SHORE                   |
| T39N         | R07E         | SNAKE LAKE OFF HWY 47                       |
| <b>T31N</b>  | R18W         |                                             |
| <b>T41N</b>  | R14W         | STAPLES LAKE                                |
| T40N         | R08E         | STELLA LAKE BOAT LANDING                    |
| <b>T22N</b>  | RIIE         | SUNSET LK RAW KING WI VET HOME              |
| T29N         | R12W         | TAINTER LAKE                                |
| T40N         | RIIE         | TAMBLING LAKE OUTFLOW RANGELINE RD          |
| <b>T</b> 33N | RIOW         | TEN MILE LAKE                               |
| T38N         | RIOE         | THUNDER LAKE SOUTH SHORE                    |
| T21N         | ROGW         | TRUMP LAKE                                  |
| T33N         | R06E         | TUG LAKE NORTH SHORE SWIMMING BEACH         |
| T12N         | R05E         | VIRGINIA LAKE-NORTH SHORE                   |
| TIZN         | RUSE<br>R17W | WAPOGASSET LAKE                             |
|              |              |                                             |
| T6N          | RIOE         | WAUBESA LAKE - BABCOCK PARK BEACH           |
| <b>T42N</b>  | RO3E         | WILSON LAKE                                 |
| T7N          | R09E         | WINGRA LAKE                                 |
| T20N         |              | WINNEBAGO LAKE HIGH CLIFF MARINA            |
| TIIN         |              | WISCONSIN LAKE MERRIMAC BOAT LANDING        |
| T28N         | R08W         | WISSOTA LAKE                                |
| T4N          | R04E         | YELLOWSTONE LAKE                            |
|              |              |                                             |

,

•

.

## Table 3 - Intensive Sampling Conducted By Wyatt Repavich and other Southern District Staff.

| Analyzed by Wyatt Repavich<br>at State Lab of Hygiene | Results<br>O-Negative<br>1-Positive<br>2-Marginally<br>Positive | Algae<br>1- <u>ANABAENA</u><br>2- <u>APHANIZOMENON</u><br>3- <u>MICROCYSTIS</u><br>4- <u>GLOEOTRICHIA</u><br>5-NONE<br>6- <u>LYNGBYA</u><br>7-OSCILLATORIA |
|-------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|

۲

| Lake Name                    | #   | Result | Alga | Туре | Date               |
|------------------------------|-----|--------|------|------|--------------------|
| KEGONSA LAKE                 | 10  | 0      | 23   |      | 29-Jun-86          |
| KEGONSA LAKE - FISH CAMP CO. | 24  | 0      | 5    |      | <b>07-Jul-86</b>   |
| KEGONSA LAKE - FISH CAMP CO. | 56  | 0      | 3    |      | 14-Jul-86          |
| KEGONSA LAKE - FISH CAMP CO. | 74  | 0      | 3    |      | <b>21-Jul-86</b>   |
| KEGONSA LAKE - FISH CAMP CO. | 101 | 0      | 3    |      | 28-Jul-86          |
| KEGONSA LAKE - FISH CAMP CO. | 121 | 0      | 3    |      | 04-Aug-86          |
| KEGONSA LAKE OUTLET          | 25  | 0      | 3 2  | 1    | 07-Jul-86          |
| KEGONSA LAKE OUTLET          | 57  | 0      | 3    |      | 14-Jul-86          |
| KEGONSA LAKE OUTLET          | 75  | _      | 5    |      | 21-Jul-86          |
| KEGONSA LAKE OUTLET          | 102 | -      | 12   |      | <b>28-Jul-</b> 86  |
| KEGONSA LAKE OUTLET          | 123 | 0      | 23   |      | <b>04-Au</b> g-86  |
| KOSHKONONG LAKE              | 26  | 0      | 21   | 3    | 07-Jul-86          |
| KOSHKONONG LAKE              | 27  | 0      | 5    |      | 07-Jul-86          |
| KOSHKONONG LAKE              | 58  | 0      | 1    |      | 14-Jul-86          |
| KOSHKONONG LAKE              | 59  | 0      | 1    |      | 14-Jul-86          |
| KOSHKONONG LAKE-DRIFT INN    | 124 | -      | 5    |      | 04-Aug-86          |
| KOSHKONONG LAKE-ROCK R. BOAT | 77  | -      | 1    |      | 21-Jul-86          |
| KOSHKONONG LAKE-ROCK R. BOAT | 104 | 0      | 5    |      | 28-Jul-86          |
| KOSHKONONG LAKE-ROCK R. BOAT | 125 | -      | 3    |      | <b>04-A</b> ug-86  |
| KOSHKONONG LAKE-SHANTY INN   | 76  | 0      | 1    |      | <b>21-Jul-8</b> 6  |
| Koshkonong lake-shanty inn   | 103 | 0      | 1    |      | 28-Jul-86          |
| MONONA BAY-TRIANGLE BOAT HOU | 79  |        | 32   |      | <b>21-Jul-8</b> 6  |
| MONONA BAY-NORTH BEACH       | 80  | 0      | 32   |      | 21-Jul-86          |
| MONONA LAKE                  | 68  | 0      | 43   |      | 21-Jul-86          |
| MONONA LAKE AT STORKWEATHER  | 190 | 0      | 43   |      | 16- <b>A</b> ug-86 |
| MONONA LAKE EAST SHORE       | 225 | 0      | 3    |      | 25-Aug-86          |
| MONONA LAKE AT STARKWEATHER  | 272 | 0      | 63   |      | 04-Sep-86          |
| ROCK RIVER EAST OF SUMNER    | 28  | 0      | 2    |      | 07-Jul-86          |
| ROCK RIVER EAST OF SUMNER    | 60  | 0      | 31   |      | 14-Jul-86          |
| ROCK RIVER EAST OF SUMNER    | 78  |        | 5    |      | <b>21-Jul-86</b>   |
| ROCK RIVER EAST OF SUMNER    | 105 | 0      | 13   |      | <b>28-Jul-86</b>   |
| ROCK RIVER EAST OF SUMNER    | 126 | 0      | 3    |      | 04-Aug-86          |

. 1.

-

|                                                                                                                                                                                                                                                    |                                                     | A A                                                               |                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| WAUBESA LAKE - BABCOCK PARK                                                                                                                                                                                                                        | 55                                                  | 03                                                                | 14-Jul-86                                                                                                         |
| WAUBESA LAKE – BABCOCK PARK                                                                                                                                                                                                                        | 73                                                  | 032                                                               | <b>21-Jul-8</b> 6                                                                                                 |
| WAUBESA LAKE – BABCOCK PARK                                                                                                                                                                                                                        | 100                                                 | 03                                                                | <b>28-Jul-8</b> 6                                                                                                 |
| WAUBESA LAKE – BABCOCK PARK                                                                                                                                                                                                                        | 122                                                 | 034                                                               | 04-Aug-86                                                                                                         |
| WAUBESA LAKE - CHRISTY'S LAN                                                                                                                                                                                                                       | 23                                                  | 032                                                               | 07-Jul-86                                                                                                         |
| WAUBESA LAKE - GOODLAND PARK                                                                                                                                                                                                                       | 54                                                  | 03                                                                | 14-Jul-86                                                                                                         |
| WAUBESA LAKE - GOODLAND PARK                                                                                                                                                                                                                       | 72                                                  | 03                                                                | <b>21-Jul-8</b> 6                                                                                                 |
| WAUBESA LAKE - GOODLAND PARK                                                                                                                                                                                                                       | 99                                                  | 03                                                                | <b>28-Jul-8</b> 6                                                                                                 |
| WAUBESA LAKE - GOODLAND PARK                                                                                                                                                                                                                       | 120                                                 | 03                                                                | <b>04-Aug-8</b> 6                                                                                                 |
| WAUBESA LAKE - LAKE FARM CO.                                                                                                                                                                                                                       | 22                                                  | 05                                                                | <b>07-Jul-86</b>                                                                                                  |
| WAUBESA LAKE - LAKE FARM CO.                                                                                                                                                                                                                       | 53                                                  | 03                                                                | 14-Jul-86                                                                                                         |
| WAUBESA LAKE - LAKE FARM CO.                                                                                                                                                                                                                       | 71                                                  | 03                                                                | 21-Jul-86                                                                                                         |
| WAUBESA LAKE - LAKE FARM CO.                                                                                                                                                                                                                       | 98                                                  | 05                                                                | 28-Jul-86                                                                                                         |
| WAUBESA LAKE - LAKE FARM CO.                                                                                                                                                                                                                       | 119                                                 | 0 3                                                               | 04-Aug-86                                                                                                         |
|                                                                                                                                                                                                                                                    |                                                     |                                                                   | -                                                                                                                 |
|                                                                                                                                                                                                                                                    |                                                     |                                                                   |                                                                                                                   |
| WINGRA LAKE                                                                                                                                                                                                                                        | 2                                                   | 03                                                                | 10-Jun-86                                                                                                         |
| WINGRA LAKE<br>Wingra lake                                                                                                                                                                                                                         | 2<br>19                                             | 03<br>03                                                          | 10-Jun-86<br>07-Jul-86                                                                                            |
|                                                                                                                                                                                                                                                    | 19                                                  | 03                                                                | 07-Jul-86                                                                                                         |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON                                                                                                                                                                                                             | 19<br>20                                            | 03<br>05                                                          | 07-Jul-86<br>07-Jul-86                                                                                            |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON                                                                                                                                                                                  | 19<br>20<br>51                                      | 03<br>05<br>031                                                   | 07-Jul-86<br>07-Jul-86<br>14-Jul-86                                                                               |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON                                                                                                                                                       | 19<br>20<br>51<br>69                                | 0 3<br>0 5<br>0 3 1<br>0 3                                        | 07-Jul-86<br>07-Jul-86<br>14-Jul-86<br>21-Jul-86                                                                  |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON                                                                                                                            | 19<br>20<br>51<br>69<br>96                          | 0 3<br>0 5<br>0 3 1<br>0 3<br>0 3                                 | 07-Jul-86<br>07-Jul-86<br>14-Jul-86<br>21-Jul-86<br>28-Jul-86                                                     |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON                                                                                                                                                       | 19<br>20<br>51<br>69                                | 0 3<br>0 5<br>0 3 1<br>0 3                                        | 07-Jul-86<br>07-Jul-86<br>14-Jul-86<br>21-Jul-86                                                                  |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON                                                                                                 | 19<br>20<br>51<br>69<br>96<br>117                   | 0 3<br>0 5<br>0 3 1<br>0 3<br>0 3<br>0 1 3                        | 07-Jul-86<br>07-Jul-86<br>14-Jul-86<br>21-Jul-86<br>28-Jul-86<br>04-Aug-86                                        |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON                                                                                                 | 19<br>20<br>51<br>69<br>96<br>117<br>21             | 0 3<br>0 5<br>0 3 1<br>0 3<br>0 3<br>0 1 3<br>0 3                 | 07-Jul-86<br>07-Jul-86<br>14-Jul-86<br>21-Jul-86<br>28-Jul-86<br>04-Aug-86<br>07-Jul-86                           |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE-VILAS PARK BEACH<br>WINGRA LAKE-VILAS PARK BEACH                                 | 19<br>20<br>51<br>69<br>96<br>117<br>21<br>52       | 0 3<br>0 5<br>0 3 1<br>0 3<br>0 3<br>0 1 3<br>0 3<br>0 3<br>0 3   | 07-Jul-86<br>07-Jul-86<br>14-Jul-86<br>21-Jul-86<br>28-Jul-86<br>04-Aug-86<br>07-Jul-86<br>14-Jul-86              |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE-VILAS PARK BEACH<br>WINGRA LAKE-VILAS PARK BEACH<br>WINGRA LAKE-VILAS PARK BEACH | 19<br>20<br>51<br>69<br>96<br>117<br>21<br>52<br>70 | 0 3<br>0 5<br>0 3 1<br>0 3<br>0 3<br>0 1 3<br>0 3<br>0 3<br>0 3 1 | 07-Jul-86<br>07-Jul-86<br>14-Jul-86<br>21-Jul-86<br>28-Jul-86<br>04-Aug-86<br>07-Jul-86<br>14-Jul-86<br>21-Jul-86 |
| WINGRA LAKE<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE-VILAS PARK BEACH<br>WINGRA LAKE-VILAS PARK BEACH                                 | 19<br>20<br>51<br>69<br>96<br>117<br>21<br>52       | 0 3<br>0 5<br>0 3 1<br>0 3<br>0 3<br>0 1 3<br>0 3<br>0 3<br>0 3   | 07-Jul-86<br>07-Jul-86<br>14-Jul-86<br>21-Jul-86<br>28-Jul-86<br>04-Aug-86<br>07-Jul-86<br>14-Jul-86              |

.

۲

-<del>---</del>

•

.

•

•

.

.

Table 4 Results for all samples collected and screened from Wisconsin Waters by WDNR for Algae Toxins during 1986.

· · · ·

| Analyzed by Wyatt Repavich<br>at State Lab of Hygiene | Results<br>O-Negative<br>1-Positive<br>2-Marginally<br>Positive | Algae<br>1- <u>ANABAENA</u><br>2- <u>APHANIZOMENON</u><br>3- <u>MICROCYSTIS</u><br>4- <u>GLOEOTRICHIA</u><br>5-NONE<br>6- <u>LYNGBYA</u><br>7-OSCILLATORIA |
|-------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TOWNSHIP                                              |                                                                 | <b>4</b> 2 - 200 - 12 <sup>2</sup> 00 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -                                                                                 |

| #   |             |             | LAKE NAME RES                                                                                                                                                                                               | ULT | ALGA | E     | T | PES |
|-----|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|---|-----|
|     | <br>Т24N    |             | CUNNINGHAM CREEK<br>WINGRA LAKE<br>DELTON LAKE<br>DELTON LAKE<br>DELTON LAKE<br>DELTON LAKE<br>DELTON LAKE<br>DELAVAN LAKE<br>CEDAR LAKE<br>YELLOWSTONE LAKE<br>KEGONSA LAKE<br>DELTON LAKE<br>TAINTER LAKE |     | 0    | <br>5 |   |     |
| 2   | T7N         | ROGE        | WINGRA LAKE                                                                                                                                                                                                 |     | õ    | 3     |   |     |
| 3   | TISN        | ROGE        | DELTON LAKE                                                                                                                                                                                                 |     | 2    |       | 2 | 3   |
| 4   | T13N        | ROGE        | DELTON LAKE                                                                                                                                                                                                 |     | ō    |       | 2 |     |
| - 5 | TI3N        | R06E        | DELTON LAKE                                                                                                                                                                                                 |     | ì    |       | 2 |     |
| 6   | TI3N        | R06E        | DELTON LAKE                                                                                                                                                                                                 |     | ō    |       | 2 |     |
| 7   | T2N         | R16E        | DELAVAN LAKE                                                                                                                                                                                                |     | 0    |       | 1 |     |
| 8   | <b>T32N</b> | R18W        | CEDAR LAKE                                                                                                                                                                                                  |     | 0    |       | 3 |     |
| 9   | T4N         | R04E        | YELLOWSTONE LAKE                                                                                                                                                                                            |     | 0    | 2     |   |     |
| 10  | T6N         | R10E        | KEGONSA LAKE                                                                                                                                                                                                |     | 0    |       | 3 |     |
| 11  | <b>T13N</b> | R06E        | DELTON LAKE                                                                                                                                                                                                 |     | 0    | 1     |   |     |
| 12  | T29N        | <b>R12W</b> | TAINTER LAKE                                                                                                                                                                                                |     | 0    |       | 1 | 2   |
| 13  | T19N        | <b>R16E</b> | LITTLE BUTTE DES MORTES LAKE                                                                                                                                                                                |     | 0    | 1     |   |     |
|     |             |             | TAINTER LAKE                                                                                                                                                                                                |     | 0    | 3     |   |     |
| 15  | T28N        | R08W        | WISSOTA LAKE                                                                                                                                                                                                |     | 0    | _     | 1 | 3   |
|     | T29N        | RO1E        | HOLDING POND DORCHESTER POTW                                                                                                                                                                                |     | 0    | 3     |   |     |
| 17  | T29N        | ROlE        | WISSOTA LAKE<br>HOLDING POND DORCHESTER POTW<br>HOLDING POND LYNN DAIRY<br>FIVE LAKE                                                                                                                        |     | 0    | 3     |   |     |
|     | T9N         | <b>R19E</b> | FIVE LAKE                                                                                                                                                                                                   |     |      | 1     | 3 |     |
|     | T7N         |             | WINGRA LAKE                                                                                                                                                                                                 |     | 0    | 3     |   |     |
| 20  | T7N         | R09E        | WINGRA LAKE PARK LAGOON                                                                                                                                                                                     |     | 0    | 5     |   |     |
| 21  | T7N         | R09E        | WINGRA LAKE-VILAS PARK BEACH<br>WAUBESA LAKE - LAKE FARM CO. PAR<br>WAUBESA LAKE - CHRISTY'S LANDING                                                                                                        |     | 0    | 3     |   |     |
| 22  | T6N         | RIOE        | WAUBESA LAKE - LAKE FARM CO. PAR                                                                                                                                                                            | K   | 0 !  | 5     |   |     |
| 23  | T6N         | RIOE        | WAUBESA LAKE - CHRISTY'S LANDING                                                                                                                                                                            |     | 0 3  | 3     | 2 |     |
| 24  | T6N         | RIOE        | KEGONSA LAKE - FISH CAMP CO. PAR                                                                                                                                                                            | K   | 0    | 5     |   |     |
|     |             | R10e        | KEGONSA LAKE OUTLET                                                                                                                                                                                         |     | 0 3  | 3     | 2 | 1   |
|     |             |             | KOSHKONONG LAKE                                                                                                                                                                                             |     |      |       | 1 | 3   |
| 27  | <b>T5N</b>  | R13E        | KOSHKONONG LAKE                                                                                                                                                                                             |     | 0 !  | 5     |   |     |
| 28  | T6N         | R14E        | ROCK RIVER EAST OF SUMNER<br>FIVE LAKE                                                                                                                                                                      |     | 0    | 2     |   |     |
| 29  | T9N         | R19E        | FIVE LAKE                                                                                                                                                                                                   |     | 0    | 1     |   |     |
| 30  | T9N         | R19E        | FIVE LAKE                                                                                                                                                                                                   |     | 0    | 1     | 3 | _   |
| 31  | TIIN        | ROSE        | WISCONSIN LAKE MOON LIGHT BAY                                                                                                                                                                               | _   | 2    | 2     | 3 | 1   |
|     |             |             | WISCONSIN LAKE MERRIMAC BOAT LAN                                                                                                                                                                            | D   |      |       |   |     |
|     |             |             | ALTOONA LAKE                                                                                                                                                                                                |     | 0    |       |   |     |
|     |             | ROSW        | WISSOTA                                                                                                                                                                                                     |     | 0    |       | 1 | 3   |
|     |             | R13E        | LITTLE GREEN LAKE                                                                                                                                                                                           |     | 1 :  | 3     | 4 | -   |
|     | T2N         | R16E        | DELAVAN LAKE-NORTHWEST CHANNEL                                                                                                                                                                              | _   | 0    | 3     | 2 | T   |
| 37  | T2N         | R16E        | LITTLE GREEN LAKE<br>DELAVAN LAKE-NORTHWEST CHANNEL<br>DELAVAN LAKE -SWIM BEACH WEST EN                                                                                                                     | U   | 0    | 3     | 2 |     |
|     |             |             | •                                                                                                                                                                                                           |     |      |       |   |     |

| 38 | T2N         | R16E        | DELAVAN LAKE LAWN LODGE BEACH<br>TEN MILE LAKE<br>PRAIRE LAKE<br>REDSTONE LAKE<br>POLK COUNTY<br>MENOMIN LAKE W. BEACH<br>TAINTER LAKE, WEST SHORE<br>PRAIRE LAKE<br>CHETEK LAKE NEAR DAM<br>TRUMP LAKE<br>BASS LAKE WEST END<br>BEAVER DAM LAKE HWY G<br>BEAVER DAM LAKE HWY D<br>WINGRA LAKE PARK LAGOON<br>WINGRA LAKE PARK LAGOON | 0 | 2           | 3 |   |   |
|----|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|---|---|---|
| 39 | <b>T33N</b> | RlOW        | TEN MILE LAKE                                                                                                                                                                                                                                                                                                                         | 1 | 3           | 2 | 1 |   |
| 40 | <b>T33N</b> | RIIW        | PRAIRE LAKE                                                                                                                                                                                                                                                                                                                           | 1 | 3           |   |   |   |
| 41 | <b>T13N</b> | R03E        | REDSTONE LAKE                                                                                                                                                                                                                                                                                                                         | 0 | 1           |   |   |   |
| 42 | T34N        | <b>R17W</b> | POLK COUNTY                                                                                                                                                                                                                                                                                                                           | 0 | 1           |   | 3 |   |
| 43 | <b>T28N</b> | R12W        | MENOMIN LAKE W. BEACH                                                                                                                                                                                                                                                                                                                 | 1 |             | 1 | 2 |   |
| 44 | T29N        | <b>R12W</b> | TAINTER LAKE, WEST SHORE                                                                                                                                                                                                                                                                                                              | 1 | 3           | 1 |   |   |
| 45 | <b>T33N</b> | RIIW        | PRAIRE LAKE                                                                                                                                                                                                                                                                                                                           | 0 | 3           | 1 |   |   |
| 46 | <b>T33N</b> | RIOW        | CHETEK LAKE NEAR DAM                                                                                                                                                                                                                                                                                                                  | 0 | 3           | 1 |   |   |
| 47 | <b>T21N</b> | R06W        | TRUMP LAKE                                                                                                                                                                                                                                                                                                                            | 0 | 1           |   | 2 |   |
| 48 | <b>T31N</b> | R20E        | BASS LAKE WEST END                                                                                                                                                                                                                                                                                                                    | 0 | 3           | 1 |   |   |
| 49 | <b>T12N</b> | R14E        | BEAVER DAM LAKE HWY G                                                                                                                                                                                                                                                                                                                 | 1 | 3           | 1 |   |   |
| 50 | <b>T12N</b> | R14E        | BEAVER DAM LAKE HWY D                                                                                                                                                                                                                                                                                                                 | 0 | 3           |   |   |   |
| 51 | T7N         | R09E        | WINGRA LAKE PARK LAGOON                                                                                                                                                                                                                                                                                                               | 0 |             | 1 |   |   |
| 52 | T7N         | R09E        | WINGRA LAKE-VILAS PARK BEACH                                                                                                                                                                                                                                                                                                          | 0 |             |   |   |   |
|    |             |             |                                                                                                                                                                                                                                                                                                                                       |   | 3           |   |   |   |
| 54 | T6N         | RIOE        | WAUBESA LAKE - GOODLAND PARK BEACH                                                                                                                                                                                                                                                                                                    | 0 |             |   |   |   |
|    |             |             | WAUBESA LAKE - BABCOCK PARK BEACH                                                                                                                                                                                                                                                                                                     |   | 3<br>3<br>3 |   |   |   |
| 56 | T6N         | RIOE        | KEGONSA LAKE - FISH CAMP CO. PARK                                                                                                                                                                                                                                                                                                     | 0 | 3           |   |   |   |
| 57 | T6N         | RIOE        | KEGONSA LAKE OUTLET<br>KOSHKONONG LAKE<br>KOSHKONONG LAKE<br>ROCK RIVER EAST OF SUMNER                                                                                                                                                                                                                                                | 0 | 3           |   |   |   |
| 58 | T5N         | R13E        | KOSHKONONG LAKE                                                                                                                                                                                                                                                                                                                       | 0 | 1           |   |   |   |
| 59 | T5N         | <b>R13E</b> | Koshkonong lake                                                                                                                                                                                                                                                                                                                       | 0 | 1           |   |   |   |
| 60 | T6N         | R14E        | ROCK RIVER EAST OF SUMNER                                                                                                                                                                                                                                                                                                             | 0 |             | 1 |   |   |
| 61 | T2N         | <b>R16E</b> | DELAVAN LAKE LAWN LODGE BEACH                                                                                                                                                                                                                                                                                                         | 0 |             |   |   |   |
| 62 | T2N         | R16E        | DELAVAN LAKE-NORTHWEST CHANNEL                                                                                                                                                                                                                                                                                                        | 0 | 3           | 2 | 1 |   |
| 63 | T2N         | R16E        | DELAVAN LAKE -SWIM BEACH WEST END                                                                                                                                                                                                                                                                                                     | 0 | 3           |   |   |   |
| 64 | <b>T13N</b> | RO3E        | REDSTONE LAKE-WEST SHORE                                                                                                                                                                                                                                                                                                              | 0 | 3           | 1 |   |   |
| 65 | T31N        | R18W        | SQUAW LAKE NORTHEAST END                                                                                                                                                                                                                                                                                                              | 1 | 3           | 1 |   |   |
| 66 | <b>T7N</b>  | <b>R18E</b> | PEWAUKEE LAKE                                                                                                                                                                                                                                                                                                                         | 0 | 3           |   |   |   |
| 67 | T7N         | R18E        | DELAVAN LAKE -NOKTHWEST CHANNED<br>DELAVAN LAKE -SWIM BEACH WEST END<br>REDSTONE LAKE-WEST SHORE<br>SQUAW LAKE NORTHEAST END<br>PEWAUKEE LAKE<br>PEWAUKEE LAKE<br>MONONA LAKE<br>WINGRA LAKE PARK LAGOON                                                                                                                              | 0 | 5           |   |   |   |
| 68 | T7N         | R10E        | MONONA LAKE                                                                                                                                                                                                                                                                                                                           | 0 | 4           | 3 |   |   |
| 69 | <b>T7N</b>  | R09E        | WINGRA LAKE PARK LAGOON                                                                                                                                                                                                                                                                                                               | 0 | 3           |   |   |   |
| 70 | T7N         | R09E        | WINGRA LAKE-VILAS PARK BEACH                                                                                                                                                                                                                                                                                                          | 0 | 3           | 1 |   |   |
| 71 | T6N         | RIOE        | WAUBESA LAKE - LAKE FARM CO. PARK                                                                                                                                                                                                                                                                                                     | 0 | 3           |   |   |   |
| 72 | T6N         | R10E        | WAUBESA LAKE - GOODLAND PARK BEACH                                                                                                                                                                                                                                                                                                    | 0 | 3           |   |   |   |
| 73 | T6N         | RIOE        | WAUBESA LAKE - BABCOCK PARK BEACH                                                                                                                                                                                                                                                                                                     | 0 | 3<br>3      | 2 |   |   |
| 74 | T6N         | R10E        | KEGONSA LAKE - FISH CAMP CO. PARK                                                                                                                                                                                                                                                                                                     | 0 | 3           |   |   |   |
| 75 | T6N         | RIOE        | KEGONSA LAKE OUTLET                                                                                                                                                                                                                                                                                                                   | 0 | 5           |   |   |   |
|    | T5N         | <b>R13E</b> | KOSHKONONG LAKE-SHANTY INN                                                                                                                                                                                                                                                                                                            | 0 | 1           |   |   |   |
|    | T5N         | R13E        | KOSHKONONG LAKE-ROCK R.                                                                                                                                                                                                                                                                                                               | 0 | 1           |   |   |   |
|    | T6N         | R14E        | ROCK RIVER EAST OF SUMNER                                                                                                                                                                                                                                                                                                             | Ō | 5           |   |   |   |
|    | T7N         | R09E        | MONONA BAY-TRIANGLE BOAT HOUSE                                                                                                                                                                                                                                                                                                        | 0 | 3           | 2 |   |   |
|    | T7N         | R09E        | MONONA BAY-NORTH BEACH                                                                                                                                                                                                                                                                                                                | 0 | 3           | 2 |   |   |
|    | TIIN        | R08E        | WISCONSIN LAKE-HWY V AT GRADS                                                                                                                                                                                                                                                                                                         | Ō | 1           | 3 | 2 |   |
|    | T6N         | ROJE        | COX HOLLOW LAKE                                                                                                                                                                                                                                                                                                                       | Õ | ī           | 3 | _ |   |
|    | TON         | ROOE        | FOX RIVER                                                                                                                                                                                                                                                                                                                             | ŏ | 4           | 3 | 1 | 2 |
|    | T26N        | R06E        | BIG BAU PLEINE RESERVOR- CO. O                                                                                                                                                                                                                                                                                                        | ŏ | 2           | - | _ |   |
|    | T26N        | R06E        | BIG EAU PLEINE RESERVOIR-CO. O                                                                                                                                                                                                                                                                                                        | õ | ī           |   |   |   |
|    | TI3N        | R03E        | REDSTONE LAKE                                                                                                                                                                                                                                                                                                                         | 2 |             | 3 |   |   |
|    | TI3N        | ROJE        | REDSTONE LAKE                                                                                                                                                                                                                                                                                                                         | ō |             | 3 |   |   |
|    | T2N         | R16E        | DELAVAN LAKE LAWN LODGE BEACH                                                                                                                                                                                                                                                                                                         | ŏ | 3           |   | 1 |   |
|    |             | - <b>.</b>  |                                                                                                                                                                                                                                                                                                                                       | - | -           | - |   |   |
|    |             |             |                                                                                                                                                                                                                                                                                                                                       |   |             |   |   |   |

\_, •

4

.

|     |             |             |                                                                              | _ | _ | _ |   |
|-----|-------------|-------------|------------------------------------------------------------------------------|---|---|---|---|
|     | T2N         | R16E        | DELAVAN LAKE-S W BEACH                                                       | 0 | 3 | 2 |   |
|     | T26N        |             |                                                                              | 0 | 1 | 3 |   |
|     | T40N        | RO1W        | BUTTERNUT LAKE                                                               | 0 | 2 | - |   |
|     | <b>T18N</b> | R16E        | BEAU DES MORTES                                                              | 0 | 3 |   |   |
|     | T9N         | R07E        |                                                                              | 0 |   | 2 |   |
|     | T32N        | R16W        |                                                                              | 2 |   | 2 | 1 |
|     | T34N        | R18W        |                                                                              | 2 | 3 | 1 |   |
|     | T7N         | R09E        |                                                                              | 0 | 3 | _ |   |
|     | <b>T7N</b>  | R09E        |                                                                              | 0 | 3 | 1 |   |
|     | T6N         | RIOE        | WAUBESA LAKE - LAKE FARM CO. PARK                                            | 0 | 5 |   |   |
|     | T6N         | R10E        | WAUBESA LAKE - GOODLAND PARK BEACH                                           | 0 | 3 |   |   |
|     | T6N         | R10E        |                                                                              | 0 | 3 |   |   |
|     | T6N         | R10E        | KEGONSA LAKE - FISH CAMP CO. PARK                                            | 0 | 3 | _ |   |
|     |             | RIOE        | KEGONSA LAKE OUTLET<br>KOSHKONONG LAKE-SHANTY INN<br>KOSHKONONG LAKE-ROCK R. | 0 | 1 | 2 |   |
|     | T5N         | <b>R13E</b> | KOSHKONONG LAKE-SHANTY INN                                                   | 0 | 1 |   |   |
|     | T5N         | R13E        | KOSHKONONG LAKE-ROCK R.                                                      | 0 | 5 |   |   |
|     | T6N         | R14E        | ROCK RIVER EAST OF SUMNER                                                    | 0 | 1 | 3 |   |
|     | T2N         | R16E        |                                                                              | 0 | 3 | 1 |   |
|     | T2N         |             | DELAVAN LAKE LAWN LODGE                                                      | 0 | 3 | 2 |   |
|     |             |             | POLK CO-BELD POND-WALLEYE REARING                                            |   | 1 | 3 | 2 |
|     |             | <b>R17W</b> |                                                                              | 0 | 5 |   |   |
|     |             | <b>R15W</b> |                                                                              | 2 | 3 | 1 |   |
|     |             |             | WAPOGASSET LAKE                                                              | 0 | 1 | _ | 3 |
|     |             |             | CRYSTAL LAKE                                                                 | 0 | 2 | 3 |   |
|     | TIIN        | R06E        | DEVILS LAKE                                                                  | 0 | 5 |   |   |
|     | <b>T19N</b> | R21E        | BIG LONG LAKE-BOAT LANDING                                                   | 1 | 1 |   | 2 |
| 115 | <b>T13N</b> | R03E        | REDSTONE LAKE-WEST SHORE                                                     | 0 | 3 | 1 |   |
| 116 | <b>T12N</b> | R05E        | VIRGINIA LAKE-NORTH SHORE                                                    | 0 | 3 |   |   |
| 117 | T7N         |             | WINGRA LAKE PARK LAGOON                                                      | 0 | 1 | 3 |   |
| 118 | T7N         | R09E        | WINGRA LAKE-VILAS PARK BEACH                                                 | 0 | 3 | 1 |   |
| 119 | T6N         | RIOE        | WAUBESA LAKE - LAKE FARM CO. PARK                                            | 0 | 3 |   |   |
| 120 | T6N         | RIOE        | WAUBESA LAKE - GOODLAND PARK BEACH                                           | 0 | 3 |   |   |
| 122 | T6N         | RIOE        | WAUBESA LAKE - BABCOCK PARK BEACH                                            | 0 | 3 | 4 |   |
| 121 | T6N         | RIOE        | KEGONSA LAKE - FISH CAMP CO. PARK                                            | 0 | 3 |   |   |
| 123 | T6N         |             | KEGONSA LAKE OUTLET                                                          | 0 | 2 | 3 |   |
| 124 | T5N         | <b>R13E</b> | KOSHKONONG LAKE-DRIFT INN<br>KOSHKONONG LAKE-ROCK R.                         | 0 | 5 |   |   |
| 125 | T5N         | <b>R13E</b> | KOSHKONONG LAKE-ROCK R.                                                      | 0 | 3 |   |   |
| 126 | T6N         | R14E        | ROCK RIVER EAST OF SUMNER                                                    | 0 | 3 |   |   |
| 127 | T20N        | R17E        | WINNEBAGO LAKE HIGH CLIFF MARINA                                             | 0 | 3 | 4 |   |
| 128 | T2 0N       | R17E        | WINNEBAGO LAKE HIGH CLIFF                                                    | 2 | 3 | 4 |   |
| 129 | <b>T38N</b> | RIOE        | THUNDER LAKE-BELOW DAM                                                       | 0 | 1 |   |   |
| 130 | T38N        | R10E        | THUNDER LAKE-ABOVE DAM                                                       | 0 | 1 |   |   |
|     |             |             | LITTLE ARBOR VITAE NE LDG                                                    | 0 |   | 3 | 1 |
|     |             |             | BEARSKIN, BIG LAKE EAST END                                                  | 0 | 4 | 3 | 1 |
|     |             |             | WINNEBAGO LAKE HIGH CLIFF MARINA                                             | 2 | 4 |   |   |
|     |             |             | WAPOGASSET LAKE                                                              | 2 |   | 3 |   |
|     |             |             | STAPLES LAKE                                                                 | ī | 3 | Ĩ |   |
|     |             |             | STAPLES LAKE                                                                 | 2 | 3 | 1 |   |
|     |             |             | WAPOGASSET LAKE                                                              | ō | 1 |   | 2 |
|     |             |             | ROBERTS LAKE-SE BOAT LANDING                                                 | ō | 4 | - | - |
|     | T35N        |             |                                                                              | ō | - | 3 |   |
|     |             |             |                                                                              | - | - | - |   |

.

| 156   | T24N         | R21E          | GREEN BAY GRID 1001 1/4 MI OF BAY                                                                                                                                                                                                                                                                                                                                   | 1      | 3        |   |
|-------|--------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|---|
|       |              |               |                                                                                                                                                                                                                                                                                                                                                                     |        | 3 ]      | L |
| 158   | <b>T39N</b>  | <b>R12W</b>   | POND 10 SPOONER W/W HATCHERY                                                                                                                                                                                                                                                                                                                                        | 0      | 5        |   |
| 159   | <b>T39N</b>  | R12W          | BUTTERNUT BIG LAKE<br>POND 10 SPOONER W/W HATCHERY<br>POND 7 SPOONER W/W HATCHERY<br>MUSKELUNCE LAKE SW SHOPE PER LANDING                                                                                                                                                                                                                                           | 0      | 5        |   |
| TOO   | 1.201        | KUOL          | MUSKELUNGE LAKE SW SHUKE BI LANDING                                                                                                                                                                                                                                                                                                                                 | 0      | 1        |   |
| 161   | <b>T12N</b>  | R05E          | VIRGINIA LAKE NORTH END CHANNEL                                                                                                                                                                                                                                                                                                                                     | 0      | 3        |   |
| 162   | TT A N       | שרום          | BALCAN FACT LAKE                                                                                                                                                                                                                                                                                                                                                    | 0      | 1 3      | 3 |
| 163   | T34N         | R17W          | BALSAM LAKE                                                                                                                                                                                                                                                                                                                                                         | 0      | 1 3      | 3 |
| 164   | <b>T38N</b>  | R10E          | BALSAM LAKE<br>BALSAM LAKE<br>THUNDER LAKE SOUTH SHORE<br>PINE LAKE NE SIDE<br>EAGLE RIVER HWY 17 BRIDGE<br>CATFISH/EAGLE LAKE THOROUGHFARE                                                                                                                                                                                                                         | 0      | 5        |   |
| 165   | T37N         | R12E          | PINE LAKE NE SIDE                                                                                                                                                                                                                                                                                                                                                   | 0      | 1        |   |
| 166   | T4 ON        | R10E          | EAGLE RIVER HWY 17 BRIDGE                                                                                                                                                                                                                                                                                                                                           | 0      | 3 ]      | L |
| 167   | T40N         | RIOE          | CATFISH/EAGLE LAKE THOROUGHFARE                                                                                                                                                                                                                                                                                                                                     | 0      | 3 ]      | L |
| 168   | T40N         | RIOE          | SCATTERING RICE LAKE SOUTH SHORE                                                                                                                                                                                                                                                                                                                                    | 0      | 4        |   |
| 169   | T40N         | RIIE          | TAMBLING LAKE OUTFLOW RANGELINE                                                                                                                                                                                                                                                                                                                                     | Ō      | 5        |   |
| 170   | T40N         | RILE          | ANVIL LAKE SOUTH SIDE BT LANDING                                                                                                                                                                                                                                                                                                                                    | Ō      | ī        |   |
| 171   | T40N         | RIIE          | BASS LAKE EAST SIDE R.E.PETERSON                                                                                                                                                                                                                                                                                                                                    | Ō      | 5        |   |
| 3 7 0 | (M) 1 (1) 1  | 5045          | CACHER DOOR TAKE AND CIDE DAOWIAMED                                                                                                                                                                                                                                                                                                                                 | •      | 14       |   |
| 173   | TT 7N        | ROAE          | CASTLE ROCK LAKE NW SIDE                                                                                                                                                                                                                                                                                                                                            | ō      | 13       |   |
| 174   | TIGN         | RO4E          | CASTLE ROCK LAKE SW SIDE CO. G                                                                                                                                                                                                                                                                                                                                      | õ      | 13       |   |
| 175   | T2N          | RIGE          | DELAVAN LAKE SOUTH CHANNEL.                                                                                                                                                                                                                                                                                                                                         | õ      | 3 2      |   |
| 176   | T2N          | RIGE          | CASTLE ROCK LAKE NW SIDE BACKWATER<br>CASTLE ROCK LAKE NW SIDE<br>CASTLE ROCK LAKE NW SIDE<br>CASTLE ROCK LAKE SW SIDE CO. G<br>DELAVAN LAKE SOUTH CHANNEL<br>DELAVAN LAKE LAWN<br>DELAVAN LAKE LAWN<br>DELAVAN LAKE WEST BRANCH<br>DELAVAN LAKE N W BEACH<br>PARK LAKE ADJ TO SWIMMING AREA<br>PARK LAKE CITY PARK ENTRANCE<br>TUG LAKE NORTH SHORE SWIMMING BEACH | õ      | 3 2      |   |
| 177   | T2N          | DISE          | DELAVAN LAKE MEST BRANCH                                                                                                                                                                                                                                                                                                                                            | ŏ      | 5        | • |
| 179   | T2N          | DIEF          | DELAVAN LAKE N W REACH                                                                                                                                                                                                                                                                                                                                              | ň      | 3        |   |
| 170   | T2N          | DIOR          | DADE LAKE ADT TO SUIMUING ADEA                                                                                                                                                                                                                                                                                                                                      | ň      | 13       | 1 |
| 100   | TT21         | DIJE          | DADY LAKE ADD TO DWIMMING AREA                                                                                                                                                                                                                                                                                                                                      | ŏ      | i 3      |   |
| 100   | TT2N         | DUCE          | TUG LAKE NORTH SHORE SWIMMING BEACH                                                                                                                                                                                                                                                                                                                                 | ŏ      | 1        | • |
| 101   | MUN          | DUOL          | MIGRETINCE TARE NORTH STOP                                                                                                                                                                                                                                                                                                                                          | ŏ      | 2]       | 2 |
| 102   | T 4 ON       | DOOF          | MUSKELUNGE LAKE NORTH SIDE<br>BOOT LAKE NORTH SIDE SUNNYBROOK                                                                                                                                                                                                                                                                                                       | ŏ      | 1 3      |   |
| 103   | 140N         | 709E          | WINNEBAGE LAKE HIGH CLIFF MARINA<br>CARSTENS LAKE WEST SHORE<br>WAPOGASSET LAKE<br>WAPOGASSET LAKE<br>BONE LAKE<br>MAGNOR LAKE                                                                                                                                                                                                                                      | 2      | 4 ]      |   |
| 105   | 120N<br>019N | D77E          | CADEMENS LAKE HIGH CHIFF MAKINA                                                                                                                                                                                                                                                                                                                                     | 2      | 2 ]      |   |
| 195   | U133M        | R23E<br>D17W  | WADOCASSET LAKE                                                                                                                                                                                                                                                                                                                                                     | i<br>i | 3]       | 2 |
| 100   | 1221         | AL/M<br>わ1710 | WADOCACCET IAVE                                                                                                                                                                                                                                                                                                                                                     | 5      | 3 1      |   |
| 100   | UJ 2 2 1     | DIEW          | BONE LAVE                                                                                                                                                                                                                                                                                                                                                           | 1      | 3 ]      |   |
| 100   | 122M         | DIEM<br>VTOM  | MAGNOR LAKE                                                                                                                                                                                                                                                                                                                                                         | ō      | 3 ]      |   |
|       |              |               | MONONA LAKE AT STORKWEATHER CR                                                                                                                                                                                                                                                                                                                                      |        | 4 3      |   |
|       |              |               | WINNEBAGO LAKE RAW APPLETON INTAKE                                                                                                                                                                                                                                                                                                                                  |        | 1        | ) |
|       |              | RI7E<br>R17E  |                                                                                                                                                                                                                                                                                                                                                                     |        | 5        |   |
|       |              |               |                                                                                                                                                                                                                                                                                                                                                                     |        |          | , |
| 193   |              | R17E          | WINNEBAGO LAKE MENASHA FILTRATION                                                                                                                                                                                                                                                                                                                                   | 0      | 1 3      | ) |
| 194   |              | R17E          | WINNEBAGO LAKE MENASHA TAP WATER                                                                                                                                                                                                                                                                                                                                    | 0      | 5<br>1 3 |   |
|       |              | R17E          | WINNEBAGO LAKE NEENAH RAW WATER                                                                                                                                                                                                                                                                                                                                     | 0      |          |   |
|       |              | R17E          | WINNEBAGO LAKE NEENAH FINISHRD TAP                                                                                                                                                                                                                                                                                                                                  | 0      | 5        |   |
| 197   |              | R17E          | WINNEBAGO LAKE OSHKOSH RAW WATER                                                                                                                                                                                                                                                                                                                                    | 0      | 1        |   |
| 198   |              | R17E          | WINNEBAGO LAKE OSHKOSH FINISHRD TAP                                                                                                                                                                                                                                                                                                                                 | 0      | 5<br>5   |   |
| - · · |              | RIIE          | SUNSET LK RAW KING WI VET HOME                                                                                                                                                                                                                                                                                                                                      | 0      | 2        |   |
|       |              | RIIE          | SUNSET LK FINISHED KING WI VET HOME                                                                                                                                                                                                                                                                                                                                 | 0      | 5        |   |
|       |              | R06E          | PESOBIC LAKE EAST SHORE                                                                                                                                                                                                                                                                                                                                             | 0      | 5        |   |
|       |              | ROGE          | PESOBIC LAKE EAST SHORE                                                                                                                                                                                                                                                                                                                                             | 0      | 5        |   |
|       |              | R24E          | MICHIGAN LAKE RAW MANITOWOC INTAKE                                                                                                                                                                                                                                                                                                                                  | 0      | 5        |   |
|       |              | R24E          | NICHIGAN LAKE FINISHED MANITOWOC                                                                                                                                                                                                                                                                                                                                    | 0      | 5        |   |
|       |              |               | NICHIGAN LAKE RAW GREEN BAY CITY                                                                                                                                                                                                                                                                                                                                    | 0      | 5        |   |
| 206   | T23N         | R25E          | NICHIGAN LAKE FINISHED GREEN BAY                                                                                                                                                                                                                                                                                                                                    | 0      | 5        |   |
|       |              |               |                                                                                                                                                                                                                                                                                                                                                                     |        |          |   |

· · ·

|     | TJON         | R24E         | MICHIGAN LAKE RAW MARINETTE                      | 0 | 5 |   |   |
|-----|--------------|--------------|--------------------------------------------------|---|---|---|---|
|     | TJON         | R24E         | MICHIGAN LAKE FINISHED MARINETTE                 | 0 | 5 |   |   |
| 209 | T2N          | R16E         | DELAVAN LAKE NORTH SHORE 1                       | 0 | 3 | 1 |   |
|     | T2N          | R16E         | DELAVAN LAKE NORTH SHORE 2                       | 0 | 3 | 1 |   |
| 211 |              | R16E         | DELAVAN LAKE NORTH SHORE 3                       | 0 | 3 | 2 | 1 |
| 212 | T2N          | R16E         | DELAVAN LAKE CHANNEL 4                           | 0 | 3 | 1 |   |
| 213 | T2N          | R16E         | DELAVAN LAKE SOUTH SHORE 5                       | 0 | 3 | 2 | 1 |
| 214 | T20N         | <b>R18E</b>  | WINNEBAGO LAKE HIGH CLIFF MARINA                 | 1 | 1 | 3 | 4 |
| 215 | T2 0N        | R17E         | WINNEBAGO LAKE RAW APPLETON INTAKE               | 0 | 5 |   |   |
| 216 | T20N         | <b>R17E</b>  | WINNEBAGO LAKE FINISHED APPLETON                 | 0 | 5 |   |   |
| 217 | T20N         | R17E         | WINNEBAGO LAKE MENASHA FILTRATION                | 0 | 5 |   |   |
| 218 | T20N         | <b>R17E</b>  | WINNEBAGO LAKE MENASHA TAP WATER                 | 0 | 5 |   |   |
| 219 | <b>T19N</b>  | R17E         | WINNEBAGO LAKE NEENAH RAW WATER                  | 0 | 5 |   |   |
| 220 | T19N         | <b>R17E</b>  | WINNEBAGO LAKE NEENAH FINISHRD TAP               | 0 | 5 |   |   |
| 221 | <b>T18N</b>  | R17E         | WINNEBAGO LAKE OSHKOSH RAW WATER                 | 0 | 5 |   |   |
|     | <b>T18N</b>  | R17E         | WINNEBAGO LAKE OSHKOSH FINISHRD TAP              | Ō | 5 |   |   |
|     | T22N         | RIIE         | SUNSET LK RAW KING WI VET HOME                   | Ō | 5 |   |   |
|     | <b>T</b> 22N | RIIE         | SUNSET LK FINISHED KING WI VET HOME              | Ō | 5 |   |   |
|     | T7N          | RIOE         | MONONA LAKE EAST SHORE                           | ō | 3 |   |   |
|     | T19N         | R24E         | MICHIGAN LAKE RAW MANITOWOC INTAKE               | ō | 5 |   |   |
|     | T19N         | R24E         | MICHIGAN LAKE FINISHED MANITOWOC                 | ō | 5 |   |   |
| 228 |              | R25E         | MICHIGAN LAKE RAW GREEN BAY CITY                 | õ | 5 |   |   |
| 229 |              | R25E         | MICHIGAN LAKE FINISHED GREEN BAY                 | õ | 5 |   |   |
| 230 | -            | R24E         | MICHIGAN LAKE RAW MARINETTE                      | ŏ | 5 |   |   |
| 231 |              | R24E         | MICHIGAN LAKE FINISHED MARINETTE                 | ŏ | 5 |   |   |
| 232 |              | R21E         | BULLHEAD LAKE WEST PUB. LANDING                  | õ | 6 | ٦ | 3 |
| 232 |              | R09W         | SISSABAGAMA LAKE SW SHORE                        |   | 3 | ī | 6 |
| 234 |              | ROSW<br>ROSE | LITTLE ST. GERMAIN LAKE EAST BAY                 | 0 | 3 | i | 0 |
| 235 |              |              | E NOT TESTED DUPLICATE                           | U | 3 | Ŧ |   |
| 235 |              | RIOE         | PELICAN LAKE EAST SIDE                           | ^ | 3 | 1 |   |
| 237 | T35N<br>T35N |              | PELICAN LAKE EAST SIDE<br>PELICAN LAKE EAST SIDE | 0 |   | + |   |
|     |              | RIOE         |                                                  | 0 | 3 |   |   |
| 238 | T26N         | R06E         | BIG EAU PLEINE RESERVOIR SE BOAT                 | 0 | ļ |   |   |
| 239 | T26N         | R06E         | BIG EAU PLEINE RESERVOIR SE BOAT                 | 2 | 1 |   |   |
| 240 |              | R06E         | BIG EAU PLEINE RESERVOIR SE BOAT                 | 0 | 1 |   |   |
| 241 |              | R04E         | PETENWELL LAKE CHICAGO AV. BOAT                  | 1 | 3 |   |   |
|     | T18N         | R04E         | PETENWELL LAKE ARROWHEAD LAGOON                  | 0 | 5 |   |   |
|     | T18N         | R04E         | PETENWELL LAKE MONROE PARK                       | 0 | 3 | - |   |
|     | <b>T18N</b>  | R04E         | PETENWELL LAKE PETENWELL PARK                    | 1 | 3 | 1 |   |
|     | T26N         | R06E         |                                                  | 0 | 3 | _ |   |
|     |              | R06E         | BIG EAU PLEINE RES. CT. O NW SIDE                | 1 | 1 | 3 |   |
|     |              | R05E         | BIG EAU PLEINE RESERVOIR PARK                    | 0 | 5 |   |   |
|     | <b>T19N</b>  |              | MICHIGAN LAKE RAW MANITOWOC INTAKE               | 0 | 5 |   |   |
|     |              | R24E         | MICHIGAN LAKE FINISHED MANITOWOC                 | 0 | 5 |   |   |
|     |              | R25E         | MICHIGAN LAKE RAW GREEN BAY CITY                 | 0 | 5 |   |   |
|     |              | R25E         | MICHIGAN LAKE FINISHED GREEN BAY                 | 0 | 5 |   |   |
| 252 | TJON         | R24E         | MICHIGAN LAKE RAW MARINETTE                      | 0 | 5 |   |   |
| 253 | TJON         | R24E         | MICHIGAN LAKE FINISHED MARINETTE                 | 0 | 5 |   |   |
| 254 | T43N         | RO3E         | LAKE OF THE FALLS (FLAMBEAU FLOWAGE              | 0 | 1 | 3 |   |
| 255 |              | RO3E         | WILSON LAKE                                      | 0 | 3 |   |   |
|     |              | RO1W         | BUTTERNUT LAKE #1 WEST BOATLANDING               | 0 | 3 | 1 | 2 |
|     | T4 ON        | RO1W         | BUTTERNUT LAKE #2 SW SHORE SMALL                 | 0 | 3 | 1 | 2 |
|     |              |              |                                                  |   |   |   |   |

|     | T2N         | R16E        | DELAVAN LAKE HWY 15 & 50 ASSEMBLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 |   | 3 |   |          |   |
|-----|-------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|----------|---|
| 259 | T2N         | R16E        | DELAVAN LAKE SOUTH SHORE<br>DELAVAN LAKE HY 15&50 VIEWCREST                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 |   | 3 |   |          |   |
| 260 | T2N         | R16E        | DELAVAN LAKE HY 15&50 VIEWCREST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 |   | 3 |   |          |   |
| 261 | T2N         | R16E        | DELAVAN LAKE HY 15&50 HIGHLAND<br>WINNEBAGO LAKE RAW APPLETON INTAKE                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 |   | 3 |   |          |   |
| 262 | T20N        | <b>R17E</b> | WINNEBAGO LAKE RAW APPLETON INTAKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 |   | 5 |   |          |   |
|     | T20N        |             | WINNEBAGO LAKE FINISHED APPLETON                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   | 5 |   |          |   |
| 264 | <b>T19N</b> | <b>R17E</b> | WINNEBAGO LAKE NEENAH RAW WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 |   | 5 |   |          |   |
| 265 | T19N        | <b>R17E</b> | WINNEBAGO LAKE NEENAH FINISHRD TAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 |   | 5 |   |          |   |
| 266 | T20N        | <b>R17E</b> | WINNEBAGO LAKE MENASHA FILTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 |   | 3 | 7 |          |   |
| 267 | T20N        | <b>R17E</b> | WINNEBAGO LAKE MENASHA TAP WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 |   | 5 |   |          |   |
| 268 | <b>T18N</b> | <b>R17E</b> | WINNEBAGO LAKE OSHKOSH RAW WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 |   | 3 | 7 |          |   |
| 269 | <b>T18N</b> | <b>R17E</b> | WINNEBAGO LAKE OSHKOSH FINISHED TAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 |   | 5 |   |          |   |
| 270 | T22N        | RIIE        | SUNSET LK RAW KING WI VET HOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 |   | 3 |   |          |   |
| 271 | T22N        | RIIE        | SUNSET LK FINISHED KING WI VET HOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 |   | 5 |   |          |   |
| 272 | <b>T7N</b>  | R10E        | MONONA LAKE AT STARKWEATHER CR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 |   | 6 | 3 |          |   |
| 273 | TIIN        | R06E        | DEVILS LAKE PLANKTON TOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 |   | 3 | 1 |          |   |
| 274 | T5N         | R12E        | PAUL BURNS POND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 |   | 1 |   |          |   |
| 275 | T5N         | R12E        | PAUL BURNS POND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 |   | 1 |   |          |   |
| 276 | T2N         | R16E        | DELAVAN LAKE HIGHLAND CHANNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 |   | 3 |   |          |   |
| 277 | T2N         | R16E        | DELAVAN LAKE HIGHLAND BEACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ō |   | 3 |   |          |   |
| 278 | T2N         | R16E        | DELAVAN LAKE CREST CHANNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ō |   | 3 | 6 |          |   |
| 279 | T2N         | R16E        | SUNSET LK FINISHED KING WI VET HOME<br>MONONA LAKE AT STARKWEATHER CR.<br>DEVILS LAKE PLANKTON TOW<br>PAUL BURNS POND<br>DELAVAN LAKE HIGHLAND CHANNEL<br>DELAVAN LAKE HIGHLAND CHANNEL<br>DELAVAN LAKE HIGHLAND BEACH<br>DELAVAN LAKE CREST CHANNEL<br>DELAVAN LAKE CREST CHANNEL<br>DELAVAN LAKE SOUTH SHORE CHANNEL<br>LITTLE ST GERMAIN LAKE EAST BAY<br>STELLA LAKE BOAT LANDING<br>MADELINE LAKE OFF CTH J<br>SNAKE LAKE OFF CTH J<br>RAINBOW FLOWAGE CTH E NEAR DAM<br>BISHOP LAKE - SOUTH BOAT LANDING | Ō |   | 3 | - |          |   |
| 280 | T2N         | R16E        | DELAVAN LAKE SOUTH SHORE CHANNEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 | 3 | 1 | 2 | 6        | 7 |
| 281 | T40N        | R08E        | LITTLE ST GERMAIN LAKE EAST BAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 | - | ī | 3 | -        | - |
| 282 | T40N        | ROSE        | STELLA LAKE BOAT LANDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ō |   | ī | 3 |          |   |
| 283 | T39N        | R07E        | MADELINE LAKE OFF CTH J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ō |   | ī | 3 |          |   |
| 284 | T39N        | R07E        | SNAKE LAKE OFF HWY 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | õ |   | 5 | - |          |   |
| 285 | T39N        | R07E        | CARROL LAKE OFF CTH J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ō |   | ī | 3 | 2        | 7 |
| 286 | T39N        | ROSE        | RAINBOW FLOWAGE CTH E NEAR DAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ō |   | ī | 3 | 2        | • |
| 287 | T35N        | R12E        | BISHOP LAKE - SOUTH BOAT LANDING<br>CRANE LAKE - ANDERSON HOUSE<br>PICKEREL LAKE VORAS TAVERN                                                                                                                                                                                                                                                                                                                                                                                                                  | ō |   | 5 | - | -        |   |
| 288 | T34N        | RIJE        | CRANE LAKE - ANDERSON HOUSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | õ |   |   | 1 |          |   |
| 289 | T34N        | RIJE        | PICKEREL LAKE VORAS TAVERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ō |   | 3 | - | -        |   |
| 290 | T34N        | RIJE        | DEEP HOLE LAKE MIDDLE SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 |   | 5 |   |          |   |
| 291 | T35N        | RIJE        | LITTLE SAND LAKE BOAT LANDING<br>WISSOTA LAKE - MOON BAY<br>PARK LAKE                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ō |   | 5 |   |          |   |
| 292 | T28N        | R08W        | WISSOTA LAKE - NOON BAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ō |   | 3 | 1 |          |   |
| 293 | T12N        | RIOE        | PARK LAKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ō |   |   | ī |          |   |
|     | T40N        |             | CRANBERRY LAKE PUB. BOAT LANDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   | 3 |   |          |   |
|     | TI3N        | RO3E        | REDSTONE LAKE BOAT LANDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ō |   |   | 2 | 7        |   |
|     | TI3N        |             | DUTCH HOLLOW LAKE PUB. BOAT LANDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |   | 3 |          |   |
|     | T34N        | R12E        | AGNES LAKE MIDDLE 1 METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ō |   | ī | • | -        |   |
| 298 |             | ••          | CATTLE DEATH-ANIMAL HEALTH LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ō |   | - |   |          |   |
|     | <b>T38N</b> | RIOW        | LONG LAKE AT THE NARROWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 3 | 2 | 1 | 6 '      | 7 |
|     | T38N        | R09W        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 |   |   | ī |          | - |
|     | T31N        | R18W        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī |   | 2 |   | -        |   |
|     | T15N        | R15E        | DAVID ZECH INT. STREAM BEHIND SHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ō |   | _ | _ | 'OMS     | 5 |
|     | T15N        | R15E        | DAVID ZECH INT. STREAM BEHIND SHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | õ |   |   |   | OM       |   |
| -   | T15N        | R15E        | DAVID ZECH INT. STREAM BEHIND SHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Õ |   |   |   | MO       |   |
|     | T15N        | R15E        | DAVID ZECH INT. STREAM BEHIND SHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ŏ |   |   |   | OMS      |   |
|     | T15N        | R15E        | DAVID ZECH INT. STREAM BEHIND SHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ŏ |   |   |   | OMS      |   |
|     | T14N        | R12E        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 |   | 2 |   |          | - |
|     | T15N        | R12B        | DAVID ZECH INT. STREAM BEHIND SHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ō |   |   |   | OMS      | S |
| 200 | T T 211     |             | DUAL BOOM THIS DIVENU DENTING QUED                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • |   |   |   | - Office | - |

, , ,

•,

- .

•

Teke Volume Acre-Feet

٠

|                           | A LAKE        | NVB<br>NVB  |                      | e ryke         | EVER<br>Lon rake |                | nj tunyaji  | DIK BNL.<br>E FYKE |             | EWN BREIN  | DEVACE DVN F |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|---------------|-------------|----------------------|----------------|------------------|----------------|-------------|--------------------|-------------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T NIHON                   | NEN           | LAKE        | NEER CREEK           | un             |                  | EISH FAKE      | <b>TA</b> D | 3                  | LONG LAK    | 518        | -            | ensi shu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21                        | 54            | 67          | 77                   | <del>7</del> 9 | . 25             | <del>7</del> 9 | 2           | 67                 | 92          | 25         | 71           | County Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 507L                      | 965           | 524         | 997                  | 272            | <b>192</b>       | STOT           | 676         | 1821               | 150         | 9930       | 2759         | Area in acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2                         | L             | L           | L                    | L              | 2                | ŀ              | L.          | L                  | L           | 3          | 2            | Lake(1)\$tream(2)Impoundment(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>7</b> £                | 9             | SL          | <b>5</b> 8           | 75             | 91               | 30             | 51          | ٤۶                 | 25          | 97         | L            | nex. Depth Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XSL                       | <b>X</b> 0    | <b>X</b> 0  | <b>X</b> 0           | XSL            | 20               | XSL            | <b>X</b> 0  | <b>X</b> 0Z        | <b>X</b> 0Z | <b>XIE</b> | <b>X</b> 0   | tee Greater than 20 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| X51                       | X07           | <b>32</b> X | <b>X</b> 0           | **             | 20%              | XS             | XSZ         | <b>X</b> 51        | XL          | <b>X</b> 2 | 305          | Area Less than 3 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| X02                       | <b>X</b> 0    | 209         | XSL                  | 202            | 205              | 222            | XOL         | *51                | <b>x</b> 0  | 109        | <b>XO</b>    | mosted brad early                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XOL                       | <b>X</b> 0    | XSL         | <b>X</b> 01          | XSL            | xo               | X02            | XOL         | <b>X</b> 0         | XS          | <b>X</b> 0 | <b>X</b> 0   | mostel Jevang sent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>X</b> 0                | <b>X</b> 0    | XS          | 201                  | <b>X</b> 01    | <b>X</b> 0       | XOL            | <b>X</b> 0  | XSL                | <b>%</b> 0  | XSL        | XL           | Area Rock Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| xoz                       | <b>x66</b>    | x0Z         | *59                  | X57            | xos              | XSL            | 20%         | XOL                | <b>X</b> 56 | XSZ        | 222          | mostel Bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6                         | s             | 2           | 7                    | z              | 7                | 7              | z           | 21                 | •           | 288        | 121          | Direct Dreinege Ares Sq. Niles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| X06                       | X06           | X08         | X01                  | XS             | 205              | <b>X</b> 01    | <b>x</b> 0  | X55                | x66         | 228        | X16          | Area Agricultural Dramage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| X01                       | xoi           | xoz         | 202                  | X56            | 205              | 206            | X66         | X59                | <b>x</b> 0  | XL7        | X£           | egeniend breitet & bill sent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1921                      | ŝ             | 9           | 7                    | 811            | 08               | 821            | z           | SI.                | z           | 220        | 136          | Mutershed Area 5q. Hiles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ,<br>L                    | 0             | u<br>L      | z                    | ·              | L                | , ,            | ů<br>0      | z                  | z           | 2          | ÷<br>L       | Inlet 0(Hone)](Hevigeble)2(Hot Hev)3(Several)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| د<br>ا                    | 0             | Z           | z                    | с<br>1         | L<br>L           | L<br>L         | 0           | L                  | z           | L          | L            | Outlet D(None) (Nevigeble) 2(Not Nev) 3(Intermittent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                         | L<br>L        | Z           | U<br>I               | 7              | Z                | 7              | Z           | z                  | z           | 2          | Z            | [euclocked 1(Yes) 2(no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6 <u>7</u><br>02          | 0             | 12<br>0     | 15 <del>6</del><br>0 | 26<br>0        | 50               | 9£<br>0        | 2           | 0                  | 0           | 12         | 961<br>01    | Weter Control Structure Neight Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9°2                       | 2<br>151      | 12<br>8.8   | 7°9                  | 2.7            | 7°2<br>19        | 1              | 89          | 8 9<br>221         | 871<br>871  | 12         | 326          | ange ytinilaalia<br>tief besteets in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 99L                       | 222           | 123         | 542                  | 29             | 971              | <del>7</del> 9 | 9°9         | 8.9                | 8.7<br>262  | 25L<br>219 | 612<br>5°8   | particitation of the second second of the se |
| 2                         | S             | 661         | 7                    | •              | 7                | 2              | Z<br>A      |                    | 1           | 2          | 5            | Contact and 2 veg. C dany ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9                         |               |             | 6                    | 7              | 2                | 1              | -           |                    | <u>s</u>    | -          | l<br>c       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53                        | ŀ             | ŀ           | 1                    | ł              | 2                | 6              | ŀ           | ŀ                  | ŀ           | 3          | 5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                         | L             | Z           |                      | 2              | 2                | 2              | Z           | 2                  | Z           | S          | 6            | Wintertill 1(Yes)2(Ho)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Z                         |               | S           |                      | Z              | L                | ۱.             | Z           | 2                  | ŀ           | Z          | L            | (N)S(as)) sinisique of the second of the sec |
| L                         |               | Z           |                      | Z              | Z                | Z              | 2           | Z                  | ŀ           | 2          | L            | Cerp 1(Yes)2(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2                         |               | 2           |                      | Z              | Z                | Z              | Z           | 2                  | L           | Z          |              | (oN)S(sey)! Asitned bestures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L                         | ۰ <b>۱</b>    | Z           | Z                    | Z              | L                | 2              | Z           | S                  | 2           | ŀ          |              | Pollution Reached Lake 1(Yes)2(No)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2                         |               | Z           |                      | L              | Z                | L              | L           | 5                  | 2           | S          | (Jenute)     | Mira S+)2(neWira S+)2(e)der2)! elevel neten entreuten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L.                        | <del>79</del> | 25          | 871                  | 09             | 0                | 8              | 6           | 081                | L           | <u>575</u> | 0991         | (sersa)bms/sel/gninio[bA fo sera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>X</b> 05               | <b>X</b> 0    | <b>X66</b>  | XS                   | <b>X</b> 05    | <b>%</b> 0       | <b>X09</b>     | 20%         | 207                | <b>X</b> 0  | <b>X</b> 0 | <b>X66</b>   | Percent Wetlend Wor-Woody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>X</b> 05               | 266           | <b>%</b> 0  | <b>X56</b>           | <b>X</b> 05    | <b>X</b> 0       | 207            | <b>X0</b> 2 | 209                | <b>X66</b>  | <b>X</b> 0 | XL           | Percent Welland Woody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| x66 x0 x56 x05 x0 x07 x02 |               |             | XOS XO XO7 XO2       |                | X07 X02          | X02            |             | 209                | <b>X</b> 66 | <b>X</b> 0 | XL           | Percent Wetland Woody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

209901 22905

٠

.

4

7222

2187

٠

5136

1026 11818

٦.

•

| Percent Netland Noody                                                                                           | <b>X66</b> | 202                | xo          | <b>X</b> 0  | <b>X06</b>  | <b>X</b> 0  | <b>X</b> 0  | XOL          | <b>X</b> 05 | KO              |                                        | *66         |
|-----------------------------------------------------------------------------------------------------------------|------------|--------------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-----------------|----------------------------------------|-------------|
| Percent Netland Non-Noody                                                                                       | <b>X</b> 0 | <b>XO</b> S        | <b>X</b> 0  | <b>X</b> 0  | XOL         | <b>X66</b>  | <b>X</b> 0  | <b>%06</b>   | <b>X</b> 05 | <b>X66</b>      |                                        | <b>x</b> 0  |
| Area of balloling wetland (berea)                                                                               | 095        | 2                  |             |             | 592         | 7           |             | OL           | 22          | 801             | 029                                    | 621         |
| Flucturting Neter Levels 1(Stable)2(+2 FtMan)3(+2 FtM                                                           | f 5        | L .                | Z           | 2           | 6           | L           | •           | •            | 6           | Z               | L.                                     | 2           |
| Pollution Resched Lake 1(Yes)2(No)                                                                              | L          | 2                  | Z           | S           | 2           | 2           | 2           | 2            | 2           | 2               | · •                                    | •           |
| (of)S(se)) faitned beings                                                                                       | 2          | Z                  | L           | S           | L           | 5           | Z           | 2            | 2           | 2               | 2                                      | 2           |
|                                                                                                                 | Z          | Z                  | Z           | 2           | 2           | 2           | 2           | •            | 2           | 2               | L.                                     | S           |
| (0) S(30) (10) (10) (10) (10) (10) (10) (10) (1                                                                 | Z          | •                  | 1           | 2           | Z           | Z           | 2           | •            | •<br>-      | S               | •                                      | S           |
| Wintertill 1(Yee)2(No)                                                                                          | L          | S                  | S           | Z           | 2           | •           | 2           | 2            | 2           | 2               | 2                                      | S           |
| chtorte may in the second                                                                                       | 2          | 3                  | 2           | 2           | L           | •           | L.          | 52           | 3           | ŀ               | •                                      | 3           |
| Secchi Disk Feet                                                                                                | 2          |                    | S           | ZL          |             | 2           | 51          | 6            |             |                 | 2                                      | -           |
| Weter Color 1(Lt.3r)S(Met.Br)S(Cl.eer)S(Turbid)                                                                 | 6          | •                  | S           | L           | 7           | •           | •           | S            | •           |                 | 5                                      | S           |
| Conductance 25 Deg. C unho/sec                                                                                  | 130        | 88                 | 200         | 725         | 22          | 82          | 06          | · <b>521</b> | <b>26</b>   | 518             | 332                                    |             |
| 2 inU broken32 Ng                                                                                               | 9.8        | 8.9                | 8.8         | 8           | 6.7         | 9.7         | 7.7         | <b>4.</b> 7  | 8.8         | S.T             | 9'8                                    |             |
| Alter for the second | 20         | 57                 | 101         | 152         | 34          | \$2         | 17          | 4            | **          |                 | 132                                    |             |
| Mater Control Structure Neight Feet                                                                             | 24         | 0                  | 28          | 53          | •           | 0           | 0           | 25           | 0           | 2               | S                                      | 28          |
| rendlected 1(Yes) 2(no)                                                                                         | 2          | 2                  | S           | , z         | 2           | L           | •           | Z            | Z           | 2               | Z                                      | S           |
| Dutlet O(None)1(Havigebie)2(Not Nev)3(Intermittent)                                                             | L          | L.                 | 2           | L.          | 0           | 0           | 0           | •            | •           | •               | ŀ                                      | •           |
| Inter O(None)1(Nev1geb(e)2(Not Nev)3(Severe()                                                                   | 6          | ۴.<br>۱۳           | 2           | •           | 0           | 0           | 0           | •            | 1           | •               | •                                      | •           |
| Mitershed Area 5q. Niles                                                                                        | 6/95       | 51                 | 30          | 215         | 2           | •           | •           | 2291         | 62          | 65              | 9219                                   | 6002        |
| the bild & Metland Design                                                                                       | <b>XO</b>  | XIS                | 207         | XS          | <b>X</b> 56 | XSS         | <b>X66</b>  | XSL          | 207         | <b>X</b> 02     |                                        | XOL         |
| Iree Agriculturel Dreinee                                                                                       | <b>X0</b>  | XGL                | <b>X09</b>  | <b>X56</b>  | XS          | *57         | <b>X</b> 0  | 858          | <b>X09</b>  | 30%             |                                        | <b>X06</b>  |
| Sitest Breinege Aree Sq. Wiles                                                                                  | 69         | 13                 | 7           | 2           | 2           | ŀ           | L           | 52           | S           | S               | 0                                      | 56          |
| anosse Anul ent                                                                                                 | XSL        | 202                | <b>X09</b>  | XS          | <b>X</b> 5Z | XOL         | SOX         | X52          | XOL         | <b>%</b> 51     |                                        | <b>X</b> 0Z |
|                                                                                                                 | <b>X</b> 0 | <b>X</b> 0         | <b>X</b> 0  | XS          | 20%         | <b>X</b> 0  | <b>%</b> 0  | XS           | <b>X</b> 0  | <b>X</b> 0      | <b>X</b> 0                             | <b>X</b> 0  |
| Iros Gravel Bottom                                                                                              | SOX        | *5                 | <b>X</b> 0  | 20%         | XS          | SOX         | 20%         | XS           | XOL         | SSS             | <b>X</b> 0                             | <b>X</b> 0  |
| ires Sard Bottom                                                                                                | X59        | XSZ                | <b>X</b> 07 | <b>XO</b> 2 | <b>X</b> 05 | <b>XO</b> 2 | <b>%09</b>  | X59          | <b>X08</b>  | <b>X09</b>      | <b>X</b> 0                             | x08         |
| test E muit ass Lest                                                                                            | XSL        | XS                 | XL.         | X51         | XSL         | XOE         | <b>X</b> 01 | XSL          | 30%         | X21             |                                        | <b>X</b> 0Z |
| tee Greater than 20 feet                                                                                        | XSE        | <b>X</b> 0         | X72         | XL          | X52         | <b>X</b> 0  | 207         | XSL          | <b>X</b> 0  | <b>X</b> 0Z     | XSL                                    | <b>X</b> S  |
| lest flegth feet                                                                                                | **         | 91                 | 92          | 50          | 87          | 25          | 17          | 22           | SL          | 32              | 15                                     | 54          |
| (E) /reathruces [ (S) mean / S( f ) also                                                                        | 2          | 2                  | 2           | 2           | L           | ŀ           | L           | 3            | 3           | L               | L                                      | 2           |
| Lee in acres                                                                                                    | 81222      | 725L               | 513         | દ્ર         | 612         | 62L         | 4           | 2271         | 922         | 9811            | 807721                                 | 2715        |
| Jagung Aguno,                                                                                                   | 62         | 2                  | 25          | 95          | 85          | 95          | L           | 21           | 2           | 67              | 12                                     | 25          |
| 940 Hans                                                                                                        | 20W        |                    | STONE LAK   | <br>ר       |             | Wh FVKE     |             |              | שנרב רעג    | ······<br>3     | •••••••••••••••••••••••••••••••••••••• | NISNOOS     |
|                                                                                                                 |            | יייי<br>אנאופ ראגפ |             |             | WWDVBVS     |             | IAT         | INTER LAKE   |             |                 | ALINNEBYCO FYKE                        |             |
|                                                                                                                 |            |                    |             | EKDALE FL   |             |             | SER LAKE    |              |             | NAPOGASSET LAKE |                                        |             |

. **t**.

•••• | 3 .

.

|                                                           | I BCONSIN<br>LAKE |
|-----------------------------------------------------------|-------------------|
|                                                           |                   |
| County Number                                             | 11                |
| Aree in acres                                             | 8900              |
| Loke(1)Stream(2)Impoundment(3)                            | 3                 |
| Max, Depth Feet                                           | 24                |
| Area Greater than 20 feet                                 | 10%               |
| Area Less than 3 feet                                     | 5X                |
| Area Sand Bottom                                          | 50X               |
| Area Gravel Bottom                                        | 7%                |
| Aree Rock Sottom                                          | 3%                |
| Area Nuck Bottom                                          | 40%               |
| Direct Drainage Area Sq. Hiles                            | 123               |
| Area Agricultural Drainage                                | 65%               |
| Area Wild & Watland Drainage                              | 35%               |
| Wetershed Area Sq. Hiles                                  | 8950              |
| <pre>Inlet O(None)1(Navigable)2(Not Nav)3(Several)</pre>  | 1                 |
| Outlet 0(Hone)1(Havigable)2(Not Hav)3(Intermittent)       | 1                 |
| Lendlecked 1(Yes) 2(no)                                   | 2                 |
| Water Control Structure Height Feet                       | 38                |
| Alkelinity ppm                                            | 72                |
| pH Standard Unit                                          | 8.7               |
| Conductance 25 Deg. C unho/sec                            | 227               |
| Water Color 1(Lt.Br)2(Med.Br)3(Dk.Br)4(Clear)5(Turbid)    | 4                 |
| Secchi Disk Feet                                          | 3                 |
| Chloride mg/l                                             | 3                 |
| Winterkill 1(Yes)2(No)                                    | 2                 |
| Algae Public Compleints 1(Yes)2(No)                       | 1                 |
| Carp 1(Yes)2(No)                                          | 1                 |
| Stunted PanFish 1(Yes)2(No)                               | 2                 |
| Pollution Reached Lake 1(Yes)2(No)                        | 1                 |
| Fluctuating Water Levels 1(Stable)2(+2 Ft&Man)3(+2 Ft&Mat | 2                 |
| Area of Adjoining Wetland(Acres)                          | 965               |
| Percent Wetland Non-Woody                                 | 54%               |
| Percent Watland Woody                                     | 46%               |
| Lake Volume Acre-Feet                                     | 53400             |



.